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Abstract

Semantic knowledge is often expressed in the form of intuitive
theories, which organize, predict and explain our observations
of the world. How are these powerful knowledge structures
represented and acquired? We present a framework, logical
dimensionality reduction, that treats theories as compressive
probabilistic models, attempting to express observed data as a
sample from the logical consequences of the theory’s under-
lying laws and a small number of core facts. By performing
Bayesian learning and inference on these models we combine
important features of more familiar connectionist and symbolic
approaches to semantic cognition: an ability to handle graded,
uncertain inferences, together with systematicity and compo-
sitionality that support appropriate inferences from sparse ob-
servations in novel contexts.

Problems of semantic cognition
A person’s store of common-sense knowledge about the
world is vast, but it is more than just a vast collection of
facts. In many domains, the mind organizes what it knows
into large-scale systems, with structure at multiple levels of
abstraction. These abstract systems of representation—called
schemas, or theories—are crucial for our ability to make in-
ferences that go beyond the sparse and noisy data of percep-
tual experience.

How are such powerful knowledge representations ac-
quired, structured, and used? These problems lie at the heart
of semantic cognition. Early proposals focused on symbolic
structures, as in the semantic networks of Collins and Quillian
(1969) (hereafter CQ) for organizing categories of objects and
their properties. Categories are placed in a tree-structured
taxonomy, with properties located at nodes of the tree and
assumed to inherit down to all categories below them. Each
property needs to be stored only at the highest node of the tree
where it holds generically, leading to a compact encoding of
objects’ properties and the ability to project known properties
to novel objects.

Later work emphasized the limitations of symbolic repre-
sentations in handling noisy data or exceptions, and in ac-
counting for graded effects of similarity on people’s inductive
judgments. Symbolic approaches were also criticized for not
providing a working account of how their abstract represen-
tations could be learned from experience.

An alternative approach to modeling abstract semantic
knowledge using connectionist networks emerged in the
1980’s. Hinton proposed a connectionist network that could
learn abstract systems of kinship relations (Hinton, 1986),
while RM explored a similar architecture for learning about
categories and properties (Rogers & McClelland, 2004)—
essentially the same problem that CQ treated from a symbolic

perspective. While these models can handle noise and un-
certainty, they also have important limitations, complemen-
tary to those of symbolic approaches. They do not naturally
display the systematicity and compositionality that character-
ize people’s intuitive theories and common-sense reasoning
(Fodor & Pylyshyn, 1988). This limitation shows up most
clearly when making inferences about novel entities that are
only sparsely observed. Suppose that we encounter two new
kinds of organisms, tufas and kibos, and we are told that kibos
have some novel property (e.g., they have omulums). If we
then learn that tufas are kibos, it is likely that tufas also have
omulums. The CQ model makes this prediction, via property
inheritance down through the taxonomy of categories. The
RM network, however, does not automatically yield this in-
ference, if it is trained on the two facts is a(tufa, kibo) and
has a(kibo, omulum). Because the concept ‘kibo’ plays dif-
ferent roles in these two propositions—it is the object of is a
and the subject of has a—it is represented in different popu-
lations of units, and the effects of training on these two facts
appear in non-overlapping sets of weights. The network does
not equate ‘kibo’ in the first proposition with ‘kibo’ in the
second proposition, and so fails to draw the obvious infer-
ence.

This example does not imply that it would be impossible to
design a connectionist semantic model whose inferences did
respect basic principles of systematicity and compositional-
ity. Our point is only that the connectionist approach does
not naturally capture these aspects of human inference, which
are no less essential than the statistical capacities it does cap-
ture well. While it is possible that either the connectionist
approach or the structured symbolic approach could be ex-
tended in some way that makes for a satisfactory solution, our
aim here is to explore new alternatives for modeling abstract
semantic knowledge.

We describe an approach that combines valuable capaci-
ties of both traditional paradigms: an ability to represent ab-
stract knowledge respecting systematicity and composition-
ality, and hence to make appropriate inferences from sparse
data in novel situations; and an ability to learn from noisy
data and generalize in graded fashion based on the statistics
of observed data. Our approach is based on a hierarchical
Bayesian model over logical representations. This is similar
in spirit to proposals in inductive logic programming (Mug-
gleton & De Raedt, 1994), although these are not typically
formalized explicitly as hierarchical Bayesian models (for a
review of this approach see, Tenenbaum, Griffiths, and Kemp
(2006)). A close relative of our approach is (Conklin & Wit-



ten, 1994), where logical theories are learned using a com-
plexity prior. However, that approach does not attempt to
construct theories with novel unobservable predicates, which
is crucial to understanding many real-world domains and to
our work here.

Our framework can be viewed as a kind of dimensional-
ity reduction for structured logical theories. We observe data
in the form of relations and attributes over a set of objects,
and we infer a representation of the abstract structure under-
lying these data, expressed in terms of a subset of first-order
predicate logic. The observations are high dimensional, and
the inferred underlying abstract structure can be seen as a low
dimensional ‘space’ into which the observed objects are em-
bedded.

While the model instantiates a structured domain theory,
it supports statistical inference via the probabilistic genera-
tive process linking the domain theory to the observed data.
Bayesian inversion of this generative model allows us to in-
fer the low-dimensional abstract structure underlying the ob-
served data.

We illustrate our approach on simple versions of the kin-
ship and taxonomic categorization domains where previous
connectionist approaches have been developed. We show
that given an appropriate probabilistic domain theory, we
can make successful inferences from sparse data in novel
contexts—a setting which has proven challenging for connec-
tionist models. The problem of learning an abstract domain
theory remains more difficult for our approach than for con-
necionist models, but we show that at least in some simple
cases, our hierarchical Bayesian formulation allows the cor-
rect abstract domain theory to be inferred from observations.

Theories: structure and form
We use the term theory formally as a specification of a set of
relations and an associated set of laws and types that govern
them. Theories are instantiated by models, or possible worlds,
corresponding to ways in which a theory may hold for a par-
ticular set of objects. For example, we can apply the theory
of kinship to reason about a set of individuals in a family, and
later apply it to an entirely different family. We will refer each
of these collections of objects that a theory can apply to, and
their associated abstract structures, as contexts. Relations in-
clude ‘father’, ‘child’, or ‘spouse’, while a law might be that
‘the child of an individual’s spouse is also their child.’ Every
family forms a context, and two models might be one where
Alice is the spouse of Bob, and another in which Alice is the
spouse of Carroll.

The general framework we follow is shown in Figure 2(a).
In a generative fashion, our theories produce models, each of
which in turn generates observations. Each theory specifies
a set of core relations, whose values are not directly observ-
able. These are analogous to the lower-dimensional space in
numerical dimensionality reduction. The laws of the theory
then relate the core relations to an observable set of deriva-
tive or observable relations (the ‘high-dimensional space’ of

the theory.) Laws in our theories take the form of typed Horn
clauses, commonly used in the logic and inductive logic pro-
gramming literature. A proposal for Horn clauses as a psy-
chologically plausible representation of theories is found in
(Kemp, Goodman, & Tenenbaum, 2007).

A feature of our framework is that the values of derivative
relations (such as mother, in kinship) can be compressed into
a particular assignment of values for the core relations (such
as parent), via the theory’s laws. The probabilistic genera-
tive model we define favors theories that adopt as few core
relations as possible, seeking the optimal compression of the
given set of observations.
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Figure 1: (a) A segment of a family tree for the kinship theory
used in Hinton (1986). (b) A Collins & Quillian-like taxon-
omy. Categories in bold red, properties in italics blue.

(a) (b)

Core rels: femaleC : Person× Person Core rels: is aCF : Cat× Cat

spouseCF : Person× Person has aC : Cat× Prop

childCF : Person× Person

Types: Person Types: Cat, Prop

Laws: Laws:

female(X)← femaleC(X) is a(X, Y)← is aCF(X, Y)

spouse(X, Y)← spouseCF(X, Y) has a(X, Y)← has aC(X, Y)

spouse(X, Y)← spouse(Y, X) is a(X, Y)← is a(X, Z) ∧ is a(Z, Y)

child(X, Y)← childCF(X, Y) has a(X, Y)← is a(X, Z) ∧ has a(Z, Y)

child(X, Y)← child(X, Z) ∧ spouse(Z, Y)

mother(X, Y)← female(X) ∧ child(Y, X) son(X, Y)← ¬female(X) ∧ child(X,Y)

father(X,Y)← ¬female(X) ∧ child(Y, X) wife(X,Y)← female(X) ∧ spouse(X,Y)

daughter(X, Y)← female(X) ∧ child(X, Y) husband(X,Y)← ¬female(X) ∧ spouse(X,Y)

Table 1: Logical representations of (a) portion of the kinship
theory, and (b) taxonomy theory. Core relations and functions
are denoted with C and F subscripts, respectively.

A generative model for theories
In this section we expand the basic generative model (Figure
2(a)), describing in more detail how theories are represented,
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Figure 2: (a) The generic structure of a theory learning frame-
work based on dimensionality reduction. (b) An instantiation
of the generic framework in K contexts, for theories where
the core relations are generated independently. Shaded nodes
denote observed variables for inference given an existing the-
ory.

how a theory generates a model of the relations over a partic-
ular set of objects, and how observations are generated from
a model.

Formally, a theory T is a triple 〈Core, Laws, τ〉 of core
relations1, laws, and types, respectively. The core relations
specify an unobservable, compressed representation of the
domain, while the laws are a set of rules for recovering the
observable properties of the domain from this core repre-
sentation. Because the laws determine the observable rela-
tions given the core relations, fixing the extension of all core
relations uniquely determines a model. The core relations
themselves are generated independently according to exten-
sion weights θi (each core relation Ri has its own extension
weight determining the fraction of “core facts” that are ex-
pected to be true). As a further compression, we allow that
some core relations are functions: if R is a functional rela-
tion, then for each i, R(i, j) holds for at most one j (note
that this reduces the number of independent core facts, since
columns of R are no longer independent). More formally, the
core relations are generated as follows:

1. For each Ri ∈ Core, draw a θi ∼ Beta(α, β).

2. For every context k ≤ K,

(a) Choose a group of objects Ot ⊆ Objk that belong to
each type t ∈ τ .

(b) Generate the core extension Ci
k for Ri: for every a, b ∈

Objk, Ri holds with probability P (Ri(a, b)) = θi when
the types of a, b match the type signature of Ri (and
probability 0 otherwise).

(c) Complete the model M for Ck, by iterative application
of every L ∈ Laws to Ck, until no additional inferences
are made.

1For simplicity, we describe the generative process only for the
case of binary relations; similar processes describe unary or higher-
arity relations.

(d) Sample a set of positive observations, Obsk, from M :

P (Obsk) =
∏

i

P (oi ∈ Obsk)

=
∏

i

{
1

size oi ∈ M,

ε oi 6∈ M.

where size is the number of true facts in M . A small
non-zero value of ε allows the theory to tolerate noise in
the observed data.

Note that while we focus here on the problem of learning
from positive observations only, the model can easily be ex-
tended to learn from negative observations as well. Learn-
ing from positive data is often considerably more difficult
than learning from both positive and negative data, and we
show that promising generalization is possible even in this
less richly observed setting.

Model inference
Given this generative process, we can compute the probabil-
ity that a query q—a logical atom, such as female(mary) or
spouse(mary, jon)—is true given a set of contexts, a theory,
and a setting of the hyperparameters α=(α, β). Summing
over models of the theory (and restricting to K = 1 for clar-
ity), we see that:

P (q | Obs, Obj, T, α) =∑
C,M

P (q | M)P (M | C)P (C | Obs, Obj, T ).

The laws of T uniquely determine M given C, so the sum
over M and the term P (M | C) can be dropped. The remain-
ing sum can be expressed via Bayes’ rule as follows:

P (q | Obs, Obj, T ) ∝∑
C

P (q | C)P (Obs | C, T )P (C | Obj, T ). (1)

When there are few objects, the sum over the extensions of
the core relations can be computed exactly. In practice, we
must often approximate the sum using Gibbs sampling or
other Monte Carlo methods; these methods can also be used
to search for single most probable model.

Inference in sparse contexts
Once a learner acquires a systematic theory, such as kin-
ship or taxonomy (as shown in Table 1), a number of infer-
ences about novel, sparsely observed objects can be made.
When we place probabilities over these logical representa-
tions, three general classes of inferences are possible: deduc-
tive, inductive, and deductive consequences of inductive in-
ferences. We show examples of all three for the theories of
taxonomy and kinship.
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Figure 3: (a) (a . . . j × a . . . j) matrices of observable rela-
tions in the kinship domain. Black and grey entries indicate
observed and inferred relations, respectively. White entries
indicate relations inferred to be false. (b) Inferred family tree,
compactly representing all inferences in (a). Females shown
in bold italics, males in ordinary font (c’s gender is unknown,
indicated by a circle.)

Kinship Consider the family relations shown in Figure 3.
In light of the logical theory of kinship, many inferences
could be made. For example, the gender of the family mem-
bers can be deduced with certainty, since mothers are always
female, sons are always males, and so forth.

In addition to deductive inferences, the observations invite
several plausible inductive inferences. Since a and b are both
observed to be parents of c, it is plausible that a is the spouse
of b. In light of this inductive inference, one can infer—by
application the logical laws of kinship—that d is the daughter
of b, since d was already observed to be the daughter of a.
This is an example of a deductive consequence of an inductive
inference. Note how our initial inductive leap, that a and b are
married, led to a deductive inference that allowed us to make
efficient use of our observations. The best model found for
this context via greedy stochastic search contains all of these
inferences, deductive and inductive. The core relations for
this best-scoring model correspond to the family tree shown
in Figure 3(b); the observable relations that it predicts will be
true (or false) are indicated by the squares colored gray (or
white, respectively) in Figure 3(a).

Essential to these inferences is the fact that the identity of
objects remains the same even if they play different ‘roles’
in distinct scenarios. In our observations, we see two roles
for a: one in which it is the mother of c (as first argument to
the mother predicate), and another in which it is the parent
of d (as the the second argument to daughter.) The effective
integration of information from both the deductive and induc-
tive inferences just shown relies heavily on the identity of a
in these two distinct roles.
Taxonomy Consider the full taxonomy given in Figure
1(b). Suppose that we observe only the is a links correspond-

ing to direct edges in the hierarchy, along with the properties
true of the leaf-node categories. For instance, we observe
that canaries (a leaf-node category) can sing, are yellow, have
wings, and have skin, that eagles also have wings and skin,
and that canaries and eagles are both birds and are animals
(along with many other facts). We make no direct observa-
tions about the properties of birds, fish or animals, though.
If we then search for the best-scoring model, we recover the
configuration of core relations shown in Figure 1(b): the ex-
tension of is aCF and has aC includes only the minimal set
of is a and has a links needed to capture all observations un-
der the theory’s laws. Each property is attached to only one
category in the is a hierarchy, the lowest superordinate of all
categories with that property. We compress out the correla-
tions in the observed properties of leaf-node categories, by
positing properties true of abstract superordinates which are
not themselves ever directly observed.

Now suppose that we learn of two new objects, a and b,
by making the following minimal observations: is a(a, fish),
is a(b, animal). The classic CQ approach would infer many
common-sense inferences about a, b, e.g. that both breathe,
that a can swim, and so on. Our best-scoring model does
as well. Conditioned on the inferences described in the pre-
vious paragraph, that familiar properties like swimming and
breathing are probably true of the unobserved superordinate
categories fish and animal, we now infer that these properties
also hold for the new species a and b, for which we have ob-
served only a single is a relation each. This example shows
how we capture a general feature of common-sense reasoning
by combining the power of induction and deduction: an in-
ductive leap to the likely properties of unobserved superordi-
nate categories, with deductive inference of the consequences
that follow.
Property induction We now show how intuitive patterns of
graded, uncertain inference, usually thought to weigh against
symbolic representations of human semantic knowledge, can
also be captured in our probabilistic logical framework. We
consider a simple case of property induction. For tractability
and ease of presentation, we explore these phenomena us-
ing a pared-down version of the Collins & Quillian example,
shown in Figure 4(a). We call this structure a balanced taxon-
omy, where both properties and nodes are distributed evenly
along all branches of the tree. In this case, each node has
a single unique property, in addition to properties it inherits
from its parent nodes. For instance, a’s unique property is p3,
while f’s unique property is p5, and both inherit p1 from their
parent node g.

Given observations of direct is a links and properties of
leaf node category, we can then query for the probability that
each property is true of each category in the hierarchy. Fig-
ure 4(c) shows the probabilities of all queries for the property
p3, which is observed only at one leaf node category, a. As
expected, the probability that a has p3 is near certain. How-
ever, other less certain generalizations are found. It is plausi-
ble but not likely that e has p3, and very unlikely that g or f
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Figure 4: (a) Balanced taxonomy. (b) Simulations of CQ con-
texts with different sparsity levels. (c) The probabilities of
various queries under full observations of leaf node proper-
ties. Results obtained by Gibbs sampling core extensions of
the theory (using 6000 samples.)

has it. This is explained by the 1
size factor in our likelihood.

If g had p3, all nodes in the hierarchy would inherit p3, mak-
ing the fact of our first and only observation of the property
at one specific node a relatively less likely. The same size
principle weighs against generalization to e, but less so, since
e is not so far up in the taxonomy. We also see a pattern of
similarity-based generalization along the leaf node categories
of the is a hierarchy. The closer a category is in the tree to a,
the more likely it is to have p3.

Systematic study of generalization
We now study more systematically how well our approach
generalizes beyond the observed data, as a function of the
sparsity of the data it receives. Inspired by the simulations of
Hinton (1986) for the theory of kinship, we ran simulations in
which we observed randomly sampled sets of the observable
facts in the balanced taxonomy domain and searched for the
best scoring model under the taxonomic theory. In this do-
main there are a total of 98 observable propositions (7× 7 =
49 is a propositions, and the same number of has a proposi-
tions), of which 27 are true and 71 are false. For instance,
has a(a, p2) is true, while has a(b, p5) is false. In keeping
with our focus on learning from positive examples, we ob-
served a fraction of the true observable propositions—100%,
80%, 70%, or 60% of the 27 possible positive examples—and
searched for the best scoring model under the taxonomic the-
ory. Rather than merely memorizing the given true facts, we
seek to compress the data via inferring the underlying taxon-
omy and then predict the unobserved propositions this model

entails.
We evaluated performance by computing the number of

incorrect observable propositions entailed by the recovered
model. This number includes two types of errors: “false
alarms” (false propositions predicted to be true) and “misses”
(true propositions predicted to be false). Figure 4(b) shows
the results, averaged across five trials at every level of spar-
sity. Generalization is perfect when all 27 true propositions
are observed. This means that none of the 71 false propo-
sitions were incorrectly predicted to be true. Generalization
decreases gradually as the data become sparser, with errors
distributed among both misses and false alarms. Even at the
highest levels of sparsity, generalization is quite good: we
observe only 16 (≈ 60% of 27) of the 98 observable propo-
sitions and we make about 7 errors on average, inferring the
correct truth values for (on average) 91/98 observables.

Learning a logical theory
We now address the problem of learning the theories we’ve
described. We do so by defining a prior distribution P (T )
over theories. Following Kemp et. al., we take a represen-
tation length (RL) approach . Intuitively, given the choice
between two theories, a RL prior will favor the one that is
less complicated to write. The precise definition of RL is tied
to a choice of language, which in our case is the language of
Horn clauses.

As before, the distribution is described as a generative pro-
cess. Given an assignment of values to the hyperparameters
α, λ, theories are generated as follows:

1. Generate a number γ of core relations in T : γ ∼
Poisson(λ).

(a) For every generated core relation R, choose its arity,
where P (R is binary) ∼ Bern(θa) and whether it is
functional, P (R is functional) ∼ Bern(θf ). We assume
θa, θf are given.

2. Draw a set of laws, scored according to their RL. The RL
in our case is a count of the number of total predicates,
variables and clauses that appear in the laws:

P (Laws) ∝ 2−rl(Laws)

where rl(Laws) = #cp + #vars + #clauses. We assume
every L ∈ Laws is syntactically well-formed (otherwise,
P (Laws) = 0.)

We now consider a case of competing theories, by eval-
uating the true taxonomy theory discussed earlier against
seven variants, shown in Table 2. These were generated
by considering all theories that can be constructed by inclu-
sion/omission of the following features: (1) the is a transi-
tivity law (L1), (2) the property has a inheritance law (L2),
and (3) having the is a relation be a function. L1 and L2
are the third and fourth laws in Table 1(b), respectively. To
see which theory is favored on a given data set, we first
look for the best scoring model of each theory using greedy



T1 T2 T3 T4 T5 T6 T7 T8
L1

√ √
× ×

√ √
× ×

L2
√ √ √ √

× × × ×
is a func.

√
×

√
×

√
×

√
×

log score −150 −180 −163 −185 −171 −200 −164 −206

Table 2: Log scores for true taxonomy theory (shown in bold)
and its variants.

stochastic search. We then score each theory together with
its best model according to the joint posterior probability
P (T,M,C | Obs, Obj, λ, α). Table 2 shows the log scores
of the eight theories, taking as data all true observable propo-
sitions in the balanced taxonomy domain.

Note that all the variants of the true theory are favored by
our prior, as they are less complex. We can also see that the
score ordering for these theories is sometimes structured and
monotonically decreasing as we go from more to less com-
plex theories. While the prior favors simplicity, the posterior
ought to favor the more complex of the variants we consider,
since these have greater predictive power. For example, T2
is penalized for lacking is a as a function, and T3 for lacking
L1, but T4 is penalized more heavily than either for lacking
both.

Similarly, theories having is a as a function are preferred
to those that do not. A learner who believes is a is only a
relation and not a function might believe that a shark is both
a fish and a bird, leading to a penalty in the likelihood of our
model. Fixing is a as a function rules out these cases and so
gives a more compact encoding of the observations.

This monotonicity property does not hold of all theories
(compare T3,T5, and T7.) This can be explained by the fact
that L1 and L2 are not independent. A learner who does not
know about the inheritance of properties (T7) would gain lit-
tle by adopting L1, in the current data set, and vice versa,
depending on the statistics of the observations.

Our purpose was to demonstrate that our generative model
can be used as a evaluation metric for theories. We leave
open the orthogonal question of how actual learners select
hypotheses to evaluate from this vast space. Though we used
a stochastic search for hypothesis selection here, more work
is needed to see if any search-based account could provide
a solid foundation for theory learning. For any search-based
proposal to work, the probability landscape of theories must
have tractable properties, such as the monotonicity property
we considered above. An area of future work is determining
when these conditions hold for theories in general.

Conclusions and future work
In a classic paper on distributed representations, Hinton out-
lined three questions to ask of all systems of knowledge rep-
resentation: (1) Does the representation create “sensible in-
ternal representations” for the entities it processes, in a way
that is sensitive to the (potentially latent) regularities in its in-
put? (2) Does it generalize to unobserved truths of a domain?
And finally, (3) Does it compress and generalize information

from distinct but isomorphic context?
We believe that our proposed framework fares well on all

three. First, the use of a logical framework makes our rep-
resentation transparent, allowing for direct and interpretable
comparisons of the internal structure of two learned repre-
sentations. It is not obvious how to make such comparisons
in a connectionist setting. At the same time, Bayesian infer-
ence over these structured representations allows us to make
inductive leaps from sparse and noisy data, overcoming a ma-
jor flaw of traditional symbolic approaches. An advantage of
our framework is that the engine of deduction (logical repre-
sentations), and the engine of induction (Bayesian inference),
cooperate and supplement each other to reason in sparse con-
texts. We have shown the benefits of this approach for the
theories of kinship and taxonomy.

In future work, we would like to develop more scalable in-
ference algorithms and a more expressive language, allowing
unobserved entities and probabilistic generative mechanisms.
This should let us explore more realistic theories, such as the
dynamic theory of Mendelian genetics. A second direction is
to study how well our approach captures people’s reasoning
in the laboratory, following (Kemp, Goodman, & Tenenbaum,
2008).
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