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Abstract
Humor plays an essential role in human interactiBrscisely wat makes something funny,
however, remainslusive. While researabn natural language understanding has made
significant advancements in recent years, there has been little direct integration of humor
research with computational models of language understanding. In this paper, we propose two
informationtheoretic measursambiguity and distinctiveneSsderivedfrom a simple model
of sentence processing. We test these measures on a set of puns and regular sentences and show
thattheycorrelate significantly with human judgments of funninéssreover,within a set of
puns,the distinctiveness measutestinguishes exceptionally funny puns from mediocre ones.
Ourwork isthe first to our knowledgeto integratea computationamodel ofgeneralanguage
understandingnd humor theory tquantitatively predichumorat a finegrained level We
present it as an example of a framework for applying models of language processing to

understand highdevel linguistic and cognitive phenomena.
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1. Introduction

Love may make the world go round, but humor is the glue that kemgeiher. Our
everyday experiences serve as evidence that humor plays a critical role in human interactions and
composes a significant part of our linguistic, cognitive, and social lives. Previous research has
shown that humor is ubiquitous ass culturegMartin, 2010; Kruger, 1996)ncreases
interpersonal attractiofbundy, Tan & Cunningham, 1998)elps resolve intergroup conflicts
(Smith, Harrington & Neck, 2000and improves psychological wellbeifigartin, Kuiper,

Olinger & Dance, 1993However, ittle is known about theognitive basis o$uch gpervasive
and enjoyablexperienceBy providing a formal model of linguistic Imor, we aim tasolve part
of the mystenypof whatmakes us laugh

Theories of humor havexistedsincethe time ofPlato and Aristotle (se&ttardo, 1994
for review).A leading theoryn modern researgbosits that incongruitylooselycharacterizees
the presence ohultiple incompatiblemeaningsn the same inputmay be critical for humor
(Koestler, 1964Yeale, D04; Forabosco, 1992; McGhee, 1979; Martin, 2007; Hurley, Dennett,
& Adams, 2011 Vaid & Ramachandran, 20pHowever, @spiterelativeconsensus on the
importance of incongruitygefinitions of incongruityary acrossnformal analyses of joke#\s
Ritchie (2009) wrote, OThere is still not a rigorously precise definition that would allow an
experimenter to objectively determine whether or not incongruity was present in a given
situation or stimulusO (p. 33This lack of precisiormakesit difficult to empiricallytest the
role ofincongruityin humoror extend these ideas t@ancretecomputational understandin@n

the other handnostwork on computational humdocuses either on jokepecific templates and
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schemata (Binsted, 199%6aylor & Mazlack, 2004 or surface features and properties of
individual words(Mihalcea & Strapparava, 2006; Kiddon & Brun, 2011; Reyes, R0osso &
Buscaldi, 2012)One exception iMihalcea et al. (200)Qwhichused featuremspired by
incongruitytheoryto detect humorousunch lineshowever theincongruityfeatures proposed
did not significantly outperform a random baseline, leading the authors to conclug&dhat
specific features may be preferalli¢hile these dominant approaches in computational humor
are able to identify humorous stimuli within certain constraints, they fall short of testing a more
general cognitive theory of humor.

In this work, we suggest that true measures of incongrultgguistichumormay
require a model that infers meaning from words in a principled mawregbuild upon theories
of humor and language processtodormally measureghe multiplicity of meaningn puns--
sentences Oin which twidferent sets ofdeas are expressed, and we are confronted with only
one series of wor¢gSas described bihilosopher Henri BergsdBergson,1914) Punsprovide
an ideal tesbedfor our purposebecause thegresimple,humoroussentences with multiple
meanings.Herewe focus on phonetic puns, defined as puns containing words that sound
identical or similar to other words in EnglisiThe following is an example:

(1) OThe magician got so mad he pulled his hare out.O
Although thesentenceOs written formambiguously contains the word Olapeevious work
has suggestdtiatphoneticrepresentations play a central role in language comprehension even

during readingNiznikiewicz & Squires, 1996; Pexman et al., 20Pbllatsek eal., 1993.

! An earlyversion of this work appeared in the proceedings of tfleABBiual Meeting of the
Cognitive Science Society. In this extended paper, we examine a wider faegeences,

including puns that contain identical homophones as well as puns with words that sound similar
(but not identical) to other words in English.
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Takingthelexical ambiguity ofits phonetic form into accounhis sentencéhusimplicitly
expresseswo Oideas,O or meanigs

(1a) The magician got so mad he performed the trick of pulling a rabbit out of his hat.

(1b) The magician got so mad pelled out the hair on his head.
At the mod basiclevel, the humor in this pun relies on the fact thabntainsthe word Ohaj@
whichis phoneticallyconfusablavith OhailOHowever the followingsentencailso contains a
phonetically ambiguous word, but is clearly not a pun:

(2) O'he hare ran rapidly across the fi€)d
A critical differencebetween (1) and (2% thathareandhair are bothprobable meanirgjn the
context of sentendd), whereashareis much more likelfthanhair in sentencg2). From this
informal analysis, it seenthatboth meaningarecompatible with context ia phoneticpun,
suggesting that a sentenoestcontain ambiguityo be funny However,another example shows
thatambiguity alone is insufficient. Consider the sentence

(3) OLook at that hare.O
This sentence ialsoambiguous betwedmare and hair, but is utikely to elicit chucklesA
critical difference between (1) and (3) is thdtile each meaning is strongbupported by
distinct groups ofvordsin (1) (hareis supported bypmagicianO and Ohara® is supported by
OmadO and Opulled®th meanings are weakly supportedaiywords in (3).This comparison
suggests thah addition to ambiguity, distinctiveness of suppuogyalsobean important

criterion for humorQObservation®n theputativeroles ofambiguity of sentence meaning and

2 |In this work we focus on written sentences that contain phonetic ambiguity. In the future, it
would be interesting to examine humorous effects in spoken sentences, where ambiguity cannot
be partially resolved by the orthographic form.
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distinctiveness of suppontill motivate our formal measures of huntor

How should waepresenthe meaning of a senteniceorder tomeasure its ambiguity
and distinctiveness®hile formally representing sentence meaningsasraplex andargely
unsolved probleniGrefenstette et al2014;Socher et al., 2012jang et al. 2013, we can
utilize certain propertiesf phonetically ambiguous sentent¢esimplify the problemWe notice
that in sentence (1), meaning (1a) arises if the word OhareQ is interpnaredvasile meaning
(1b) arises if OhareQ is interpreted as its homoplaim&ach sentenckevel meaning directly
corresponds to the meaning of a phonetically ambiguous werd.result, we can represent
sentence meaning (1lajth hareand (1b)with hair. This approximation is coarse and captures
only the OgistO of a sentence rather than its full meatdwgever, we will show that is
sufficiently powerfulfor modding theinterpretatiorof sentencesvith only a phonetic
ambiguity.

Giventhespace of candidagentence meaningscamprehenderOs taskdsnfer a
distribution overthesemeaningdrom the words shebserveskFormally,a phonetically
ambiguoussentenceuch as (1is composed of a vector of words
1 {0 twlhl 1y, 4,0 M} whereh is phonetically confusable with ittomophonénO
Thesentence meanirig a latent variable:, which we assumieastwo possiblevalues! | and
I ,. Thesesentence meaningsin badentified withh andhQrespectivelyConsistent with a
noisy channehpproach (Levy, 2008; Levy et al., 20@ibson et al., 20)3we construe the task

of understanding a sentenceirdgrring m usingprobabilistic integration aficisyevidence

% Note that it is nbnecessary for both meanings to be completely compatible with the full
context, as illustrated by puns sucH ased to be addicted to soap, but I'm clean riawhich

the most common meaning deanis actually ruled out, rather than supported, by full
compositional interpretation of the context. What instead seems necessary is that the support
derived from the subset of context for each meaning is balanced.
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givenby . We construct a simplerobabilisticgenerative model that captures the relationship

between the mearngof a sentence and the words that compa$egt 1). If a word is

semanticallyrelevant(!, ! 1), we assum¢hatit is sampled based on semamétatednesto the
sentence meaning the word is irrelevant, or Onoj6it only reflectsgeneral language statistics
and is sampled from anrgram modelBecause the comprehender maintainsertainty about
which words are relevant is possible for heto arrive at multiple interpretations of a sentence
that are each coherenitincongruous wittonearnother, a situationthatwe hypothesizgives
rise to humaorTo capture this intuition, wemtroducetwo measures of humaterivedfrom the

distribution over sentence meanir(gstails in Methods section)

Givenwords in a sentencve infer the joint probability distributioover sentence

meanings andsemantically relevamwords whichcan be factorizeahto the following:

L (mif UC) L L nw) P(AN )i

We computea measuref humorfrom each ofthe two terms on the rigttand side Ambiguity
is quantifiedby the entropyof the distributiont (! |'T"). If entropy is high, thethe sentence is
ambiguous becausmthmeanings araearequallylikely. Distinctivenessaptureshe dgree to

whichtherelevantwordsdiffer given different sentence meanin@venonemeaning , , we
compute!, =1l (!Q!!! !,W). Given anothemeaning ,, we computé, ! ! (!9!!!! | !P).

Distinctivenesss quantified by thesymmetrizeKullback-Leibler divergencéetween these two
distributions,! . 1 )y + 1. (4 1), If thesymmetrizedKL distances high, it suggests

that thetwo sentence meaningsesupported by ditinct subsets afords inthe sentence.
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Derivation details of these two measures are in the Methods section Wéosmpirically
evaluateambiguity and distinctiveness as predictors of humar $et of phonetically ambiguous

sentences.
2. Methods
2.1 Computing model predictions

We define the ambiguityf asentencastheentropy ofP(m | !, wherel” is a vector of
observedtontentwords in a sentence (which contains a phonetically ambiguoushyarttim
is the latent sentence meani@iven the simplifying assumptidhat the distribution over
sentence meaningsnst affected by function wordeachw, in w is a content wordTl'he

distributionover sentence meanings giwsardscanbederivedusingBayesO rule

P( W)= Y P 1)

f

« ) L (C|mtf)Pam)t (F)!

=

- Z (! (m)P(f)l_[! (Wilm!!!!>! nm (Eq.1 !

=

Each value ofn is approximated by either the meaning of thservegphonetically ambiguous
word! (e.g. Oharei® sentence ())or itsunobservethomophoné" (e.g. OhairO)Ve can thus

represent !'! ! as the unigram frequep of! or!". For example! !! ="!are! is
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approximated aproportional td ("hare'. We assumesqualprior probabilitythateachsubset

of the wordss semanticdy relevant hencel !f! is a constant. (w;|! ,! ) depend®nthe

value of thesemantic relevandedicator variablé,. If fi ! !, ! ;is semanticallyelevantand b
sampled in proportion to its relatedness with the sentenaainggn. If fi =!, thenw, is

generated from a noise process and sampled in proportion to its probability given the previous

two wordsin the sentencd-ormally,

ORIy !{! ¢l ) Th=1 e 13

We estimate (w,|! ) usingempirical associatiomeasures describedtime Experiment section
andcompute! (! ;|bigram;) usingthe Google Ngrams corpug¢Brants & Franz2006) Once
we deriveM =! (! |w!, we compute its informatietheoretic entropy as a measure of

ambiguity:

g ()N Z L D)L T )

Lita!}

We nextcompute the distinctiveness of words supporting each sentence médsingy

Bayes®ule:
(O] ) ot e 15|
Since! and! are independent,(f!|!! 11 1111, which is a constant.et
=1 (Dt 1rrand!, (1) 1T We computette symmetrizecKullback-Leibler

divergence score,. ! 1L )11 11, L), whichmeasures thifference between the
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distributionof supporting wordgiven onesentence meanirend the distribution of supporting

words given another sentenceamiag. This resultsn the distinctiveness measfire

Given these derivations, veenducted the following experimentitoplement andestthe

ambiguity and distinctivenesseasures
2.2.Experiment

We collected 435entencesonsisting ofphonetic pusandregularsentencethat
containphonetically ambiguous word#/e obtainedhe pundrom a website called OPun of the
DayO (http://www.punoftheday.cdmvhichat the time of collectiocontainecbver a thousand
puns submitted by usenl/e collected40 puns where thphoneticallyambiguousvord hasan
identical homophondor example Ohaf@Sinceonly a limited rumber of puns satisfied this
criterion, a research astant generated an additional @1 sentences based on a separate list of
homophone waods resulting ina total of65 identicalhomophone pundVe selected. 30
corresponding nepun sentences from an online version of Heinle's Newbury Housemxicyi

of American Englishhttp://nhd.heinle.coim 65 of thenon-punsentences contain tlaebiguous

words observed in theun sentence@.g. OhareQhe othei65 containthe unobserved

* In addition to the symmetrized KL divgence of Eq. 6, we also experimented with-non
symmetrized KL divergence in both directions and found qualitatively identical results.
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homophone words (e.g. Ohair®) test whether our easures generalize to sentences
containingphonetically ambiguousords thado not havaedenticalhomophoneswe collected

80 puns where the phonetically ambiguous wsmdnds similatbut not identicaljo other words
in English(e.g. Otooth€bunds similar to Otruth@e also collected60 corresponding nepun
senteces.Tablel showsan example sentené®m each category.he full set of sentences can

be found herehttp://web.stanford.edu/~justinek/ppaper/results.htmi

We obtained funninegstingsfor each of thel35sentencesl00participantson
Amazon®Mechanical Turkrated the 195entences that contaifenticalhomophonesEach
participantread roughly 6@entences in random order, counterbalanced for the sentence types,
and rated each sentence on funnirf€$ow funny is this sentence®®x scale from {not at
all) to 7 (extremely) We removed 7 participants who reported a native language other than
Endish andz-scored the ratings within each participahseparate group df60 participantson
Mechanical Turk rated the 24@ar homophone sentencEsich participantead 40sentences in
random order, counterbalanced for the sentence types, aneéaatedentence on funninessa
scale froml to 7. We removed 4 participants who reported a native langothge than English
and zscored the ratings within each participafe usedthe averagez-scored ratingacross
participans as human judgments foinninesdor all 435sentences

As described in theneasure derivationsomputing ambiguity and distinctiveness

requires the conditional probabilities of each word giveergence meaninge.! (! /!|! !.In

> Results for the 195 identical homophone sentences were reported in Kao et al. (2012), which
was published in the procdrds of the 35 Annual Meeting of the Cognitive Science Society (a
nontarchival publication).

® The sample sizes were chosen such that each sentence would receive ro8gHhiyrZiness
ratings, in order for the uncertainty in funniness measurementrambenably low, while

keeping the number of sentences rated by each participant manageably small.
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practice this valueas difficult to obtainreliably and accurately in an automateéy, such as
throughWordNet distancesr semantiovector space mode{&abrilovich & Markovitch, 2007
Zhang et al., 201 Mihalcea et al., 2090, Insteadof tackling thechallenging problem of
automatically learning (! ,!|"" ) from largecorpora we observe thdt(! ,!|!! ! is related to
point wise mutual informatio(PMI) between , and! , an informationtheoretic measure

definedmathematicallyasthe following:

4, .(!. .!).!. .! !. g

NN IR A RTINS

Intuitively, PMI captures the relatedness betweemand! , whichcan bemeasured empirically
by askingpeople to judge theemantiaelatedness between two wordlbis allows us tdharness
peopleOsch knowledge of theelationships between word meanings without relying solely on
co-occurrence statistida corpora We assuméhatthe zscorechuman ratings of relatedness
between two words, denotéd! ,!! ), approximatesrue PMI. With the propesubstitutions and

transformation$from Eq. 7 we derive the following:

" We experimenteavith computing these values from corpora in eatiges of this work.

However, wefound that it is difficult to obtain reliable emccurrence statistics for many word

pairs of interest (such as OhareO and OmagicianO), due to the sparsity of these topics in most
corpora. Future work could further explore methods for extracting these types of commonsense
based semantic relationships from cargtatistics.

U weget (1,10)0 LN ) ME LI from EQ.

8By assuming (! ,!! ) ! I"# L
7; exponentiating both sides gives us Eg. 8.
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To obtain! (! |!! ) for each of the words in thémuli sentencedunction words were
removed from each of the sentences in our dataset, and the remaining words were pdined with
phonetically ambiguous wotdand its homophoneQe.g., for the pun in Tablg®dmagicianO,
Ohare@§ a legtimate word pair, as well asf@gicianO, OhairQ]). This resulted in tighct
word pairsfor identical homophone sentences and 2056 word pairs for near homophone
sentence200participants on AmazonOs Mechanical Fatkdthe semantic relatednes$
word pairs for identical homophone senten&ahparticipantsaw 146oairs of words in
random order and were asked to rate how related each word pair is using a scalefidm
We removed 5 participants who reported a native language other thishEA separate group
of 120 participants rated word pairs for near homophone sent&deagemoved 2 participants
who reported a native language other than Endglsice it is difficult to measure the relatedness
of a word with itself, we assume thatd constant for all words ancktt it as a free parameter, r.
After computing our measures, we fit this paramet@etapleOs funniness judgmenésulting
in r=13).We used the averageszored relatedness measure for each word pair to obtain
R( ! ) and Google Web unigrams to obtin ,!. This allowed us to computg! !|!! ! for

all word and meaning pairs.

3. Results

We computed an ambiguity and distinctiveness score forafdble 435sentence(see
Methodg. We found no significandifferences betweeidentical and near homophopansin
terms of funniness ratingg180.91) = 0.13, p = 0.896ambiguity scores (137.80) =1.13 p =

0.261), anddistinctiveness scor€f134.9) =-0.61, p= 0.543), suggesting that ambiguity and
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distinctiveness are fairly robust to the differences between puns that involve identical or near
homophone word#As a result, we collapsed across identical aradl hemophone sentences for
the remaininganalysesWe found that mnbiguity was significanthhigher for pun seences than
norntpun sentences(t59.49 = 7.89 p < 0.000}, which suggestthatthe ambiguity measure
succeskllly captures characteristichstinguishng puns from other phonetically ambiguous
sentencedistinctiveness was alsagnificantly higher for pun sentences than qmm
sentenceft(248.99) =6.11, p < 00001). Fig. 2 shows the standard error ellipgesthe two
sentence types intavo-dimensional space of ambiguity and distinctiveness. Although there is a
fair amount of noise in the predictors (likely due to simplifying assumptions, the need to use
empirical measures of relatedness, and the inherent complexity of humor), punese(tieth
identical and near homophone) tend to cluster at a space with higher ambiguity and

distinctiveness, while nepun sentences score lower on both measures.

We constructed linear mixedeffectsmodelof funninesgudgmentswith ambiguity and
distinctiveness afixed effects a byitem random intercept, any-subject random slopder
entropy and distinctivenesd/e found that anbiguity and distinctivenessere both highly
significant predictors, with funniness increasing as each of ambiguity and distinctiveness
increases (Table)2 Furthermorethe two measuresapture aubstantiahmount of the reliable
variance irfunniness ratingaveraged across subje@?2,432) = 4.07, R*= 025, p < 0.0001).
A linear mixed effects modéhcluding a term for the interaction between ambigaitg
distinctiveness (both as fixed effect anddmpjects random slopshowed no significant

interacton betweerthe two(t = 1.39, p> 0.15).
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We thenexaminel whether theneasures are able go beyond distinguishing puns from
nonpuns topredicing fine-grained levels of funninesgthin puns. We found thatrabiguity
does not correlate with humaatingsof funniness within the45 pun sentences (r = 0.03, p =
0.697. However distinctiveness ratings correlate significantly with human ratingsrofifiess
within pun sentences (r = 0.28, p < 0.p@y separatinghe puns into four equal bins leaison
their distinctiveness, wimund that pinswith distinctiveness measures in tog-mostquartile
were significantly funnier thapuns with distinctiveness measures in the lower quartiles
(t(90.15) = 341, p < 0.001)Fig. 3). This suggests that while anghity helps distinguisipuns
from nonpuns,high distinctiveness characterizes exceptionally humorous parsur
knowledge pur modelprovides the first quantitative measure that predicts-finained levels of

funniness within humorous stimuli.

Besides predicting the funniness of a senteth@amnodelcan also be used to reveal
critical features okachpunthat make it amusing-or each sentence, we identified the set of
words that is most likely to leemantically relevargivenT” andeachsertence meaning .
Formally, we computedrg!"# - ! (!A!|!!  IT1 andarg!"# ! (!A!|!! 11, Table3 shows a
group of identicahomophone sentences and a group of-hearophone sentences. Sentences in
each group contain the same pair of candidate meanings for the homophone; however, they differ
on ambiguity, distinctiveness, and funniness. Words tleamnast likely to beelevantgiven
sentence meanirlg, are inboldface words that are most likelp be relevangiven! , lare in
italics. Qualitatively, we observe that the two pun sentences (which are significantly funnier)
have more distinct and balanced sets of meaningful words for each sentence meaning than other

sentences in their groups. Npan sentences tend to have no words in support of the ngeanin
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that was not observed. Furthermore, ib&lfaced and italicizediords in each pun sentenaes
what one might intuitively use to explain why the sentence is firiayexample, the fact that
magicians tend to perform magic tricks with hares, and peepteto be described as pulling out

their hair when angry

4. Discussion

In this paper, we presented a simple modgjistflevel sentence processing ansed it to
deriveformal measurethatpredict human judgments of humarpuns We showed that a
noisy-channel modebf sentence processifiacilitatesflexible context selection, whiatnables a
single series of words to exprassiltiple meaningsOur work isone ofthefirst to integrate a
computationaimodel of sentence processing to analyze humamanner that is bothtuitive
andquantitative In addition, it isthe first computational worto our knowledgeo gobeyond
classifying humorous versusgular sentencds predictfine-grained funniness judgments
within humorous stimuli.

The ideaof deriving measures of humor from a modetjeheral language understanding
is closelyrelated tgprevious approachew/here humor is analyzed within a framework of
semanticheory and language comprehensi@askinOs (198SemanticScript Theoryof
Humor (SSTH)builds upon a theory of language comprehension in which language is
understood in terms of scriptdnder this analysis textis funny when it activates twacripts
that are incompatible with each oth&his theory explaina number of classic jokeghere the

punchline introducesa scriptthat is incongruous witthe script activated by the jokeOs setup
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Attardo and Raskin (199proposed revision taSBSTin the General Theory of Verbal Humor
(GTVH), whichdetails six hiearchically organized knowledges@urces thanform the
understandingf textsas well aghe detection of humoNirenburg and Raskin (2008)rther
formalized theideas proposed in SBST and GTVHdgvelopinga system for computational
semantics termed Ontological SemantiBich includesalargeconcept ontologya repository
of facts, andin analyzer thatranslategexts ino anontology-based knowledge representation
This systemprovidesrich ontologicalknowledge to suppom-depthlanguagecomprehension
and has been applied productively to a variety of donfalimenburg and Raskin, 2004; Beale et
al., 2004 Taylor et al., 2011 Hempelmann et al. (2006eda classic jokéo showthat an
extension tahe Ontological Semantics systean in principle detect as well as generate
humorous textsHowever,to our knowledge the system has not yet been testadavger body
of textsto demonstrate its performance in a quantitatira@ner(Raskin, 2008Taylor, 2010Q.
While providingdetaled analyses that reveal many important characteristics of humaoh, oh
the work on formalizindgiumor theoriegalls short ofpredictingpeopleOine-grainedjudgments
of funninesdor a large number of tex{Raskin &Attardo, 1994 Ritchie 2001; Attardo et al.
2002;Hempelmann, 2004/eale 2006 Br™net al., 200%. In this regard, we believhatour
work advances the current statd@ind approaches to humdémneory By implementinga
simplebut psychologicallymotivatedcomputationamodel of sentence processinge derived
measureshatdistinguish puns from regular senteneesicorrelate significantly with fine
grained humor ratings within pun®ur approach also providas intuitivebut automat way to
identify features that make a pun funmhissuggets thata probabilisticmodel of general
sentence processirfigven without the support oth ontological semanti®) mayenable

powerfulexplanatory measures of humor.
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In addition toadvancingcomputationabpproachesour workcontributes to cognitive
theories of humoby providing evidence that different factors may account for separate aspects
of humor appreciatiorBomehumortheoristsarguethatwhile incongruityis necessary for
humor,resolvingincongruityN discovering a cognitive rule that explains the incongruity in a
logical mamemN is alsokey (Ritchie, 1999Ritchie, 2009Suls, 1972)We can construeur
measureascorrespondingoughlyto incongruity and resolutioin this sensewhere ambiguity
represents the presence of incongruous senteaaeings, and distinctivenespresentshe
degree to which each meaniisgstrongly supported by different parts of gtienulus.Our
resultswould thensuggest thahcongruity distinguishes humorous input from regular sentences,
while the intensity of humor may depend on the degreehiolvwncongruity is resolved by
focusing on two differendupporing sets Future work could morepecificallyexamine the
relationsip betweernincongruity resaltion andthe measures presentedaar framework.

Although our task in this paper was limited in scope, it is a step towards developing
computational models that explain higleeder linguistic phenomena such as huriaraddress
more complejokes,future work may incorporate more sophisticated models of language
understanding to consider the time courssenitencgrocessing (Kamide et al., 2003; McRae et
al., 1998) effects of pragmatic reasoning and background kedgé (Kao et al., 2014a; Kao et
al., 2014b), and muksentence discourse (Polanyi, 1988; Chambers & Jurafsky, ZD08).
approach couldlsobenefit greatly from the rich commonsense knowledge encoded in the
OntologicalSemantics systend may beombinedwith it to measureambiguity and
distinctiveness at the script level rather than at the fuble sentence

Previousresearch on creative languagge such as metaphor, idioms, and irbayg

contributeda great deab our understanding of tlmgnitive mechanisms that enableople to
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infer rich meanings from sparsed ofterambiguoudinguistic input {akoff & Turner, 2009
Nunberg et al. 1994; Gibbs & OOBrien, )991e hope thabur work onhumorcontributes to
theoriesof languagainderstandingo account for a wider range tifiguistic behaviorand the
social and affective functions thegrve By derivingthe precise properties of sentences that
make us laughour work bringsusone stegloserto understanihg that funny thing alled

huma (pun intended)
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Homophone | Type Example

Identical Pun The magician was so mad he pulled his loarte
Identical Non-pun The hare ran rapidly across the field.
Identical Non-pun Some people have lots of hair on their heads.
Near Pun A dentist has to tell a patient the whole tooth.
Near Non-pun A dentist examines one tooth at a time.

Near Non-pun She always speaks the truth.

25

Table 1. Example sentence from each category. Identical homophone sentences contain

phonetically ambiguous words that have identical homophones; near homophone sentences

contain phonetically ambiguous words that have neaopbones. Pun sentences were selected

from a pun website; nepun sentences were selected from an online dictionary (see main text

for details).
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Estimate | Std. Error p-value
Intercept -2.139 0.306 < 0.0001
Ambiguity 1.915 0.221 < 0.0001
Distinctiveness | 0.264 0.040 < 0.0001

Table 2. Regression coefficients using ambiguity and distinctiveness to predict funniness ratings
for all 435 sentenceg:values are computed assuming thatttsi@tistic is approximately

normally distributed.
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Ly 'y | Type | Sentence Amb. Dist. | Funni.
Pun | Themagician got so mad heulled | 0.15 7.87 | 1.71
_ his hare out.
hare | hair .
Non | Thehare ran rapidly through the 1.43E> | 7.25 | -0.40
fields.
Pun | A dentist has totell a patient the 0.1 8.48 | 1.41
wholetooth.

tooth | truth

Non | A dentist examinesonetooth at a 8.92E° |7.65 | -0.45

time.

Table 3. Semantically relevant words, ambiguity/distinctiveness scores, and funniness ratings for
sentences from each categdiords in boldface are semantically relevant tpwords in italics

are semantically relevant ta,m
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Figure 1. Graphical representation of a geneeatnodel of a sentence. If the indicator varidble
has value 1! , is generated based on semantic relatedness to the sentence meaning

otherwise| | is sampled from a trigram language model based on the immediately preceding

two words.
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Sentence Type
— Pun
Non-pun

81-  Homophone Type
— Identical

N
®
1

Distinctiveness
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7.2+
T T T

0.0 0.1 0.2

Ambiguity

Figure2. Standard error ellipses of ambiguity and distinctiveness for each sentence type. Puns
(both identical and near homophone) score higher on ambiguity and distinctivenegannon

sentences score lower.
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Figure 3. Average funniness ratings aligtinctiveness of 145 pun sentences binned according to

distinctiveness quartiles. Error bars are confidence intervals.



