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Abstract 

Humor plays an essential role in human interactions. Precisely what makes something funny, 

however, remains elusive. While research on natural language understanding has made 

significant advancements in recent years, there has been little direct integration of humor 

research with computational models of language understanding. In this paper, we propose two 

information-theoretic measuresÑ ambiguity and distinctivenessÑ derived from a simple model 

of sentence processing. We test these measures on a set of puns and regular sentences and show 

that they correlate significantly with human judgments of funniness. Moreover, within a set of 

puns, the distinctiveness measure distinguishes exceptionally funny puns from mediocre ones. 

Our work is the first, to our knowledge, to integrate a computational model of general language 

understanding and humor theory to quantitatively predict humor at a fine-grained level. We 

present it as an example of a framework for applying models of language processing to 

understand higher-level linguistic and cognitive phenomena. 
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1. Introduction 

 

Love may make the world go round, but humor is the glue that keeps it together. Our 

everyday experiences serve as evidence that humor plays a critical role in human interactions and 

composes a significant part of our linguistic, cognitive, and social lives. Previous research has 

shown that humor is ubiquitous across cultures (Martin, 2010; Kruger, 1996), increases 

interpersonal attraction (Lundy, Tan & Cunningham, 1998), helps resolve intergroup conflicts 

(Smith, Harrington & Neck, 2000), and improves psychological wellbeing (Martin, Kuiper, 

Olinger & Dance, 1993). However, little is known about the cognitive basis of such a pervasive 

and enjoyable experience. By providing a formal model of linguistic humor, we aim to solve part 

of the mystery of what makes us laugh.  

Theories of humor have existed since the time of Plato and Aristotle (see Attardo, 1994 

for review). A leading theory in modern research posits that incongruity, loosely characterized as 

the presence of multiple incompatible meanings in the same input, may be critical for humor 

(Koestler, 1964; Veale, 2004; Forabosco, 1992; McGhee, 1979; Martin, 2007; Hurley, Dennett, 

& Adams, 2011; Vaid & Ramachandran, 2001). However, despite relative consensus on the 

importance of incongruity, definitions of incongruity vary across informal analyses of jokes. As 

Ritchie (2009) wrote, ÒThere is still not a rigorously precise definition that would allow an 

experimenter to objectively determine whether or not incongruity was present in a given 

situation or stimulusÓ (p. 331). This lack of precision makes it difficult to empirically test the 

role of incongruity in humor or extend these ideas to a concrete computational understanding. On 

the other hand, most work on computational humor focuses either on joke-specific templates and 
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schemata (Binsted, 1996, Taylor & Mazlack, 2004) or surface features and properties of 

individual words (Mihalcea & Strapparava, 2006; Kiddon & Brun, 2011; Reyes, Rosso & 

Buscaldi, 2012). One exception is Mihalcea et al. (2010), which used features inspired by 

incongruity theory to detect humorous punch lines; however, the incongruity features proposed 

did not significantly outperform a random baseline, leading the authors to conclude that joke-

specific features may be preferable. While these dominant approaches in computational humor 

are able to identify humorous stimuli within certain constraints, they fall short of testing a more 

general cognitive theory of humor. 

In this work, we suggest that true measures of incongruity in linguistic humor may 

require a model that infers meaning from words in a principled manner. We build upon theories 

of humor and language processing to formally measure the multiplicity of meaning in puns -- 

sentences Òin which two different sets of ideas are expressed, and we are confronted with only 

one series of words,Ó as described by Philosopher Henri Bergson (Bergson, 1914). Puns provide 

an ideal test bed for our purposes because they are simple, humorous sentences with multiple 

meanings.  Here we focus on phonetic puns, defined as puns containing words that sound 

identical or similar to other words in English1. The following is an example: 

(1) ÒThe magician got so mad he pulled his hare out.Ó 

Although the sentenceÕs written form unambiguously contains the word Òhare,Ó previous work 

has suggested that phonetic representations play a central role in language comprehension even 

during reading (Niznikiewicz & Squires, 1996; Pexman et al., 2001; Pollatsek et al., 1992). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 An early version of this work appeared in the proceedings of the 35th Annual Meeting of the 
Cognitive Science Society. In this extended paper, we examine a wider range of sentences, 
including puns that contain identical homophones as well as puns with words that sound similar 
(but not identical) to other words in English. 
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Taking the lexical ambiguity of its phonetic form into account, this sentence thus implicitly 

expresses two Òideas,Ó or meanings2: 

(1a) The magician got so mad he performed the trick of pulling a rabbit out of his hat. 

(1b) The magician got so mad he pulled out the hair on his head. 

At the most basic level, the humor in this pun relies on the fact that it contains the word Òhare,Ó 

which is phonetically confusable with Òhair.Ó However, the following sentence also contains a 

phonetically ambiguous word, but is clearly not a pun:  

(2) ÒThe hare ran rapidly across the field.Ó  

A critical difference between (1) and (2) is that hare and hair are both probable meanings in the 

context of sentence (1), whereas hare is much more likely than hair in sentence (2). From this 

informal analysis, it seems that both meanings are compatible with context in a phonetic pun, 

suggesting that a sentence must contain ambiguity to be funny. However, another example shows 

that ambiguity alone is insufficient. Consider the sentence: 

(3) ÒLook at that hare.Ó 

This sentence is also ambiguous between hare and hair, but is unlikely to elicit chuckles. A 

critical difference between (1) and (3) is that while each meaning is strongly supported by 

distinct groups of words in (1) (hare is supported by ÒmagicianÓ and ÒhareÓ; hair is supported by 

ÒmadÓ and ÒpulledÓ), both meanings are weakly supported by all words in (3). This comparison 

suggests that in addition to ambiguity, distinctiveness of support may also be an important 

criterion for humor. Observations on the putative roles of ambiguity of sentence meaning and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 In this work we focus on written sentences that contain phonetic ambiguity. In the future, it 
would be interesting to examine humorous effects in spoken sentences, where ambiguity cannot 
be partially resolved by the orthographic form. 
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distinctiveness of support will motivate our formal measures of humor. 3  

How should we represent the meaning of a sentence in order to measure its ambiguity 

and distinctiveness? While formally representing sentence meanings is a complex and largely 

unsolved problem (Grefenstette et al., 2014; Socher et al., 2012; Liang et al., 2013), we can 

utilize certain properties of phonetically ambiguous sentences to simplify the problem. We notice 

that in sentence (1), meaning (1a) arises if the word ÒhareÓ is interpreted as hare, while meaning 

(1b) arises if ÒhareÓ is interpreted as its homophone hair. Each sentence-level meaning directly 

corresponds to the meaning of a phonetically ambiguous word. As a result, we can represent 

sentence meaning (1a) with hare and (1b) with hair. This approximation is coarse and captures 

only the ÒgistÓ of a sentence rather than its full meaning. However, we will show that it is 

sufficiently powerful for modeling the interpretation of sentences with only a phonetic 

ambiguity.  

Given the space of candidate sentence meanings, a comprehenderÕs task is to infer a 

distribution over these meanings from the words she observes. Formally, a phonetically 

ambiguous sentence such as (1) is composed of a vector of words 

! !    ! ! , ! !𝑤! !ℎ! ! ! ! !, ! !!!!! ! , where h is phonetically confusable with its homophone hÕ. 

The sentence meaning is a latent variable 𝑚, which we assume has two possible values ! ! and 

! ! . These sentence meanings can be identified with h and hÕ, respectively. Consistent with a 

noisy channel approach (Levy, 2008; Levy et al., 2009; Gibson et al., 2013), we construe the task 

of understanding a sentence as inferring 𝑚 using probabilistic integration of noisy evidence 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Note that it is not necessary for both meanings to be completely compatible with the full 
context, as illustrated by puns such as I used to be addicted to soap, but I'm clean now, in which 
the most common meaning of clean is actually ruled out, rather than supported, by full 
compositional interpretation of the context.  What instead seems necessary is that the support 
derived from the subset of context for each meaning is balanced. 
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given by ! . We construct a simple probabilistic generative model that captures the relationship 

between the meaning of a sentence and the words that compose it (Fig. 1). If a word is 

semantically relevant (! ! ! 1), we assume that it is sampled based on semantic relatedness to the 

sentence meaning; if the word is irrelevant, or Ònoise,Ó it only reflects general language statistics 

and is sampled from an n-gram model. Because the comprehender maintains uncertainty about 

which words are relevant, it is possible for her to arrive at multiple interpretations of a sentence 

that are each coherent but incongruous with one another, a situation that we hypothesize gives 

rise to humor. To capture this intuition, we introduce two measures of humor derived from the 

distribution over sentence meanings (details in Methods section).  

------------------------------Insert Figure 1 about here ------------------------------- 

Given words in a sentence, we infer the joint probability distribution over sentence 

meanings and semantically relevant words, which can be factorized into the following: 

 

! 𝑚!𝑓  !!! ! ! ! !!  𝑤   𝑃 𝑓!!  ! ! ! !!!!!!  !!!!!! !" ! ! !  

 

We compute a measure of humor from each of the two terms on the right-hand side. Ambiguity 

is quantified by the entropy of the distribution ! !   |!! . If entropy is high, then the sentence is 

ambiguous because both meanings are near-equally likely. Distinctiveness captures the degree to 

which the relevant words differ given different sentence meanings. Given one meaning ! ! , we 

compute ! ! = !! ! !!  ! ! ,𝑤 . Given another meaning ! ! , we compute ! ! !   ! ! !!!! ! ! ! . 

Distinctiveness is quantified by the symmetrized Kullback-Leibler divergence between these two 

distributions, ! !" ! ! !  !! ! ! ) + ! !" (! ! !!| ! !). If the symmetrized KL distance is high, it suggests 

that the two sentence meanings are supported by distinct subsets of words in the sentence. 
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Derivation details of these two measures are in the Methods section below. We empirically 

evaluate ambiguity and distinctiveness as predictors of humor in a set of phonetically ambiguous 

sentences.  

 

2. Methods 

 

2.1. Computing model predictions 

 

We define the ambiguity of a sentence as the entropy of 𝑃 𝑚     ! ! , where  !  is a vector of 

observed content words in a sentence (which contains a phonetically ambiguous word ℎ) and 𝑚 

is the latent sentence meaning. Given the simplifying assumption that the distribution over 

sentence meanings is not affected by function words, each 𝑤!  in 𝑤 is a content word. The 

distribution over sentence meanings given words can be derived using BayesÕ rule: 

 

𝑃 !      𝑤) =    𝑃 ! , ! !
!

 

∝ ! ! 𝑚!𝑓 𝑃 𝑚 ! 𝑓
!

! 

= ! 𝑚 𝑃(𝑓) ! 𝑤! 𝑚! ! ! !
!!

!  !!!!!!!!!  (𝐸𝑞. ! !  

 

Each value of 𝑚 is approximated by either the meaning of the observed phonetically ambiguous 

word !  (e.g. ÒhareÓ in sentence (1)) or its unobserved homophone !"  (e.g. ÒhairÓ). We can thus 

represent ! ! ! !  as the unigram frequency of !  or !" . For example, ! ! ! = ! 𝑎𝑟𝑒!  is 
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approximated as proportional to ! ("hare"! . We assume equal prior probability that each subset 

of the words is semantically relevant, hence ! !𝑓!  is a constant. ! (𝑤!|! , ! � ) depends on the 

value of the semantic relevance indicator variable ! ! . If 𝑓! ! ! , ! ! is semantically relevant and is 

sampled in proportion to its relatedness with the sentence meaning 𝑚. If 𝑓! = ! , then 𝑤!  is 

generated from a noise process and sampled in proportion to its probability given the previous 

two words in the sentence. Formally, 

 

! ! ! ! ! ! ! ! ! !
! ! ! !                            if ! ! = !
! ! ! !"#$%&! !!!!!!    !!!!if ! ! ! 0!!!  !!!!!!!!!! !" !3!  

 

We estimate ! 𝑤! !  using empirical association measures described in the Experiment section 

and compute ! ! ! 𝑏𝑖𝑔𝑟𝑎𝑚!  using the Google N-grams corpus (Brants & Franz, 2006). Once 

we derive 𝑀 = ! !    𝑤! , we compute its information-theoretic entropy as a measure of 

ambiguity: 

!"# ! ! !! ! ! ! ! !"# ! ! ! ! !!!!!!  !!!!!!  ! !" . 4)
! ! !!,! }

 

We next compute the distinctiveness of words supporting each sentence meaning. Using 

BayesÕ Rule: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  !!!!  !!!!  ! !" !5!  

 

Since !  and !  are independent, ! 𝑓! !! ! ! ! ! ! ! , which is a constant. Let   

! ! = ! ! ! ! ! ! ! !  and ! ! ! ! ! ! ! ! ! ! ! . We compute the symmetrized Kullback-Leibler 

divergence score ! !" ! ! ! !!! ! ! ) ! !! !" ! ! ! !!! ! ! ), which measures the difference between the 
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distribution of supporting words given one sentence meaning and the distribution of supporting 

words given another sentence meaning. This results in the distinctiveness measure4:  

 

!"#$ ! ! ! ! ! ! ! ! ! !"
! ! !
! ! !

! ! ! ! !"
! ! !
! ! !

! ! ! !! !
!

! !" ! ! !  

 

Given these derivations, we conducted the following experiment to implement and test the 

ambiguity and distinctiveness measures.  

 

2.2. Experiment 

 

We collected 435 sentences consisting of phonetic puns and regular sentences that 

contain phonetically ambiguous words. We obtained the puns from a website called ÒPun of the 

DayÓ (http://www.punoftheday.com), which at the time of collection contained over a thousand 

puns submitted by users. We collected 40 puns where the phonetically ambiguous word has an 

identical homophone, for example Òhare.Ó Since only a limited number of puns satisfied this 

criterion, a research assistant generated an additional 25 pun sentences based on a separate list of 

homophone words, resulting in a total of 65 identical-homophone puns. We selected 130 

corresponding non-pun sentences from an online version of Heinle's Newbury House Dictionary 

of American English (http://nhd.heinle.com). 65 of the non-pun sentences contain the ambiguous 

words observed in the pun sentences (e.g. ÒhareÓ); the other 65 contain the unobserved 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 In addition to the symmetrized KL divergence of Eq. 6, we also experimented with non-
symmetrized KL divergence in both directions and found qualitatively identical results. 
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homophone words (e.g. ÒhairÓ)5. To test whether our measures generalize to sentences 

containing phonetically ambiguous words that do not have identical homophones, we collected 

80 puns where the phonetically ambiguous word sounds similar (but not identical) to other words 

in English (e.g. ÒtoothÓ sounds similar to ÒtruthÓ). We also collected 160 corresponding non-pun 

sentences. Table 1 shows an example sentence from each category. The full set of sentences can 

be found here: http://web.stanford.edu/~justinek/pun-paper/results.html 

------------------------------Insert Table 1 about here ------------------------------- 

We obtained funniness ratings for each of the 435 sentences. 100 participants on 

AmazonÕs Mechanical Turk6 rated the 195 sentences that contain identical homophones. Each 

participant read roughly 60 sentences in random order, counterbalanced for the sentence types, 

and rated each sentence on funniness (ÒHow funny is this sentence?Ó) on a scale from 1 (not at 

all) to 7 (extremely). We removed 7 participants who reported a native language other than 

English and z-scored the ratings within each participant. A separate group of 160 participants on 

Mechanical Turk rated the 240 near homophone sentences. Each participant read 40 sentences in 

random order, counterbalanced for the sentence types, and rated each sentence on funniness on a 

scale from 1 to 7. We removed 4 participants who reported a native language other than English 

and z-scored the ratings within each participant. We used the average z-scored ratings across 

participants as human judgments of funniness for all 435 sentences. 

As described in the measure derivations, computing ambiguity and distinctiveness 

requires the conditional probabilities of each word given a sentence meaning, i.e. ! ! ! ! !! ! . In 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Results for the 195 identical homophone sentences were reported in Kao et al. (2012), which 
was published in the proceedings of the 35th Annual Meeting of the Cognitive Science Society (a 
non-archival publication). 
6 The sample sizes were chosen such that each sentence would receive roughly 20-30 funniness 
ratings, in order for the uncertainty in funniness measurement to be reasonably low, while 
keeping the number of sentences rated by each participant manageably small. 
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practice, this value is difficult to obtain reliably and accurately in an automated way, such as 

through WordNet distances or semantic vector space models (Gabrilovich & Markovitch, 2007; 

Zhang et al., 2011; Mihalcea et al., 2010)7. Instead of tackling the challenging problem of 

automatically learning ! ! ! ! !! ) from large corpora, we observe that ! ! ! ! !! !  is related to 

point wise mutual information (PMI) between ! !  and ! , an information-theoretic measure 

defined mathematically as the following: 

  

!"#
! ! ! ! ! ! !

! ! ! ! ! ! !
! !"# ! ! ! ! ! !"# ! ! ! ! ! !!!!!!!!! !" ! ! !  

 

Intuitively, PMI captures the relatedness between ! !  and ! , which can be measured empirically 

by asking people to judge the semantic relatedness between two words. This allows us to harness 

peopleÕs rich knowledge of the relationships between word meanings without relying solely on 

co-occurrence statistics in corpora. We assume that the z-scored human ratings of relatedness 

between two words, denoted!! ! ! ! ! , approximates true PMI. With the proper substitutions and 

transformations8 from Eq. 7, we derive the following: 

 

! ! ! ! !! ! ! !! ! ! ! !! ! ! ! !!!!  !!!!!!!!!!!!!!!!! !" ! ! !  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 We experimented with computing these values from corpora in early stages of this work. 
However, we found that it is difficult to obtain reliable co-occurrence statistics for many word 
pairs of interest (such as ÒhareÓ and ÒmagicianÓ), due to the sparsity of these topics in most 
corpora. Future work could further explore methods for extracting these types of commonsense-
based semantic relationships from corpus statistics.  
8 By assuming ! ! ! ! ! ! !"#

! ! ! ! !! !

! ! ! ! ! ! !
, we get ! ! ! ! ! ! !"# ! ! ! ! ! !"# ! ! ! ! !  from Eq. 

7; exponentiating both sides gives us Eq. 8. 
 



COMPUTATIONAL MODEL OF PUNS 
	
  

13	
  

To obtain ! ! ! ! !  for each of the words in the stimuli sentences, function words were 

removed from each of the sentences in our dataset, and the remaining words were paired with the 

phonetically ambiguous word h and its homophone hÕ (e.g., for the pun in Table, [ÒmagicianÓ, 

ÒhareÓ] is a legitimate word pair, as well as [ÒmagicianÓ, ÒhairÓ]). This resulted in 1460 distinct 

word pairs for identical homophone sentences and 2056 word pairs for near homophone 

sentences. 200 participants on AmazonÕs Mechanical Turk rated the semantic relatedness of 

word pairs for identical homophone sentences. Each participant saw 146 pairs of words in 

random order and were asked to rate how related each word pair is using a scale from 1 to 10. 

We removed 5 participants who reported a native language other than English. A separate group 

of 120 participants rated word pairs for near homophone sentences. We removed 2 participants 

who reported a native language other than English. Since it is difficult to measure the relatedness 

of a word with itself, we assume that it is constant for all words and treat it as a free parameter, r. 

After computing our measures, we fit this parameter to peopleÕs funniness judgments (resulting 

in r = 13). We used the average z-scored relatedness measure for each word pair to obtain 

𝑅 ! ! ! !  and Google Web unigrams to obtain ! ! ! ! ! . This allowed us to compute ! ! ! ! !! !  for 

all word and meaning pairs.  

 

3. Results 

 

We computed an ambiguity and distinctiveness score for each of the 435 sentences (see 

Methods). We found no significant differences between identical and near homophone puns in 

terms of funniness ratings (t(130.91) = 0.13, p = 0.896), ambiguity scores (t(137.80) = 1.13, p = 

0.261), and distinctiveness scores (t(134.91) = -0.61, p = 0.543), suggesting that ambiguity and 
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distinctiveness are fairly robust to the differences between puns that involve identical or near 

homophone words. As a result, we collapsed across identical and near homophone sentences for 

the remaining analyses. We found that ambiguity was significantly higher for pun sentences than 

non-pun sentences (t(159.48) = 7.89, p < 0.0001), which suggests that the ambiguity measure 

successfully captures characteristics distinguishing puns from other phonetically ambiguous 

sentences. Distinctiveness was also significantly higher for pun sentences than non-pun 

sentences (t(248.99) = 6.11, p < 0.0001). Fig. 2 shows the standard error ellipses for the two 

sentence types in a two-dimensional space of ambiguity and distinctiveness. Although there is a 

fair amount of noise in the predictors (likely due to simplifying assumptions, the need to use 

empirical measures of relatedness, and the inherent complexity of humor), pun sentences (both 

identical and near homophone) tend to cluster at a space with higher ambiguity and 

distinctiveness, while non-pun sentences score lower on both measures.  

------------------------------Insert Figure 2 about here ------------------------------- 

We constructed a linear mixed-effects model of funniness judgments with ambiguity and 

distinctiveness as fixed effects, a by-item random intercept, and by-subject random slopes for 

entropy and distinctiveness. We found that ambiguity and distinctiveness were both highly 

significant predictors, with funniness increasing as each of ambiguity and distinctiveness 

increases (Table 2).  Furthermore, the two measures capture a substantial amount of the reliable 

variance in funniness ratings averaged across subjects (F(2,432) = 74.07,  R2 = 0.25, p < 0.0001). 

A linear mixed effects model including a term for the interaction between ambiguity and 

distinctiveness (both as fixed effect and by-subjects random slope) showed no significant 

interaction between the two (t = 1.39, p > 0.15). 

------------------------------Insert Table 2 about here ------------------------------- 
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We then examined whether the measures are able to go beyond distinguishing puns from 

non-puns to predicting fine-grained levels of funniness within puns. We found that ambiguity 

does not correlate with human ratings of funniness within the 145 pun sentences (r = 0.03, p = 

0.697). However, distinctiveness ratings correlate significantly with human ratings of funniness 

within pun sentences (r = 0.28, p < 0.001). By separating the puns into four equal bins based on 

their distinctiveness, we found that puns with distinctiveness measures in the top-most quartile 

were significantly funnier than puns with distinctiveness measures in the lower quartiles 

(t(90.15) = 3.41, p <  0.001) (Fig. 3). This suggests that while ambiguity helps distinguish puns 

from non-puns, high distinctiveness characterizes exceptionally humorous puns. To our 

knowledge, our model provides the first quantitative measure that predicts fine-grained levels of 

funniness within humorous stimuli.  

------------------------------Insert Figure 3 about here ------------------------------- 

Besides predicting the funniness of a sentence, the model can also be used to reveal 

critical features of each pun that make it amusing. For each sentence, we identified the set of 

words that is most likely to be semantically relevant given !  and each sentence meaning ! . 

Formally, we computed arg!"# ! ! ! ! !! ! ! ! !  and arg!"# ! ! ! ! !! ! ! ! ! . Table 3 shows a 

group of identical-homophone sentences and a group of near-homophone sentences. Sentences in 

each group contain the same pair of candidate meanings for the homophone; however, they differ 

on ambiguity, distinctiveness, and funniness.  Words that are most likely to be relevant given 

sentence meaning ! !   are in boldface; words that are most likely to be relevant given ! ! !are in 

italics. Qualitatively, we observe that the two pun sentences (which are significantly funnier) 

have more distinct and balanced sets of meaningful words for each sentence meaning than other 

sentences in their groups. Non-pun sentences tend to have no words in support of the meaning 
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that was not observed. Furthermore, the boldfaced and italicized words in each pun sentence are 

what one might intuitively use to explain why the sentence is funnyÑ for example, the fact that 

magicians tend to perform magic tricks with hares, and people tend to be described as pulling out 

their hair when angry.  

------------------------------Insert Table 3 about here ------------------------------- 

 

4. Discussion 

 

In this paper, we presented a simple model of gist-level sentence processing and used it to 

derive formal measures that predict human judgments of humor in puns. We showed that a 

noisy-channel model of sentence processing facilitates flexible context selection, which enables a 

single series of words to express multiple meanings. Our work is one of the first to integrate a 

computational model of sentence processing to analyze humor in a manner that is both intuitive 

and quantitative. In addition, it is the first computational work to our knowledge to go beyond 

classifying humorous versus regular sentences to predict fine-grained funniness judgments 

within humorous stimuli.  

The idea of deriving measures of humor from a model of general language understanding 

is closely related to previous approaches, where humor is analyzed within a framework of 

semantic theory and language comprehension. RaskinÕs (1985) Semantic Script Theory of 

Humor (SSTH) builds upon a theory of language comprehension in which language is 

understood in terms of scripts. Under this analysis, a text is funny when it activates two scripts 

that are incompatible with each other. This theory explains a number of classic jokes where the 

punch line introduces a script that is incongruous with the script activated by the jokeÕs setup. 
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Attardo and Raskin (1991) proposed a revision to SBST in the General Theory of Verbal Humor 

(GTVH), which details six hierarchically organized knowledge resources that inform the 

understanding of texts as well as the detection of humor. Nirenburg and Raskin (2004) further 

formalized the ideas proposed in SBST and GTVH by developing a system for computational 

semantics termed Ontological Semantics, which includes a large concept ontology, a repository 

of facts, and an analyzer that translates texts into an ontology-based knowledge representation. 

This system provides rich ontological knowledge to support in-depth language comprehension 

and has been applied productively to a variety of domains (Nirenburg and Raskin, 2004; Beale et 

al., 2004; Taylor et al., 2011). Hempelmann et al. (2006) used a classic joke to show that an 

extension to the Ontological Semantics system can in principle detect as well as generate 

humorous texts. However, to our knowledge the system has not yet been tested on a larger body 

of texts to demonstrate its performance in a quantitative manner (Raskin, 2008; Taylor, 2010). 

While providing detailed analyses that reveal many important characteristics of humor, much of 

the work on formalizing humor theories falls short of predicting peopleÕs fine-grained judgments 

of funniness for a large number of texts (Raskin & Attardo, 1994; Ritchie 2001; Attardo et al. 

2002; Hempelmann, 2004; Veale, 2006; Br™ne et al., 2006). In this regard, we believe that our 

work advances the current state of formal approaches to humor theory. By implementing a 

simple but psychologically motivated computational model of sentence processing, we derived 

measures that distinguish puns from regular sentences and correlate significantly with fine-

grained humor ratings within puns. Our approach also provides an intuitive but automatic way to 

identify features that make a pun funny. This suggests that a probabilistic model of general 

sentence processing (even without the support of rich ontological semantics) may enable 

powerful explanatory measures of humor.  
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In addition to advancing computational approaches, our work contributes to cognitive 

theories of humor by providing evidence that different factors may account for separate aspects 

of humor appreciation. Some humor theorists argue that while incongruity is necessary for 

humor, resolving incongruityÑ discovering a cognitive rule that explains the incongruity in a 

logical mannerÑ is also key (Ritchie, 1999; Ritchie, 2009; Suls, 1972). We can construe our 

measures as corresponding roughly to incongruity and resolution in this sense, where ambiguity 

represents the presence of incongruous sentence meanings, and distinctiveness represents the 

degree to which each meaning is strongly supported by different parts of the stimulus. Our 

results would then suggest that incongruity distinguishes humorous input from regular sentences, 

while the intensity of humor may depend on the degree to which incongruity is resolved by 

focusing on two different supporting sets. Future work could more specifically examine the 

relationship between incongruity resolution and the measures presented in our framework. 

Although our task in this paper was limited in scope, it is a step towards developing 

computational models that explain higher-order linguistic phenomena such as humor. To address 

more complex jokes, future work may incorporate more sophisticated models of language 

understanding to consider the time course of sentence processing (Kamide et al., 2003; McRae et 

al., 1998), effects of pragmatic reasoning and background knowledge (Kao et al., 2014a; Kao et 

al., 2014b), and multi-sentence discourse (Polanyi, 1988; Chambers & Jurafsky, 2008). Our 

approach could also benefit greatly from the rich commonsense knowledge encoded in the 

Ontological Semantics system and may be combined with it to measure ambiguity and 

distinctiveness at the script level rather than at the level of the sentence.  

Previous research on creative language use such as metaphor, idioms, and irony has 

contributed a great deal to our understanding of the cognitive mechanisms that enable people to 
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infer rich meanings from sparse and often ambiguous linguistic input (Lakoff & Turner, 2009; 

Nunberg et al. 1994; Gibbs & OÕBrien, 1991). We hope that our work on humor contributes to 

theories of language understanding to account for a wider range of linguistic behaviors and the 

social and affective functions they serve. By deriving the precise properties of sentences that 

make us laugh, our work brings us one step closer to understanding that funny thing called 

humor (pun intended). 
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Homophone Type Example 

Identical Pun The magician was so mad he pulled his hare out. 

Identical Non-pun The hare ran rapidly across the field. 

Identical Non-pun Some people have lots of hair on their heads. 

Near Pun A dentist has to tell a patient the whole tooth. 

Near Non-pun A dentist examines one tooth at a time. 

Near Non-pun She always speaks the truth. 

 

Table 1. Example sentence from each category. Identical homophone sentences contain 

phonetically ambiguous words that have identical homophones; near homophone sentences 

contain phonetically ambiguous words that have near homophones. Pun sentences were selected 

from a pun website; non-pun sentences were selected from an online dictionary (see main text 

for details). 
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 Estimate Std. Error p-value 

Intercept -2.139 0.306 < 0.0001 

Ambiguity 1.915 0.221 < 0.0001 

Distinctiveness 0.264 0.040 < 0.0001 

 

Table 2. Regression coefficients using ambiguity and distinctiveness to predict funniness ratings 

for all 435 sentences; p-values are computed assuming that the t statistic is approximately 

normally distributed. 
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Table 3. Semantically relevant words, ambiguity/distinctiveness scores, and funniness ratings for 

sentences from each category. Words in boldface are semantically relevant to ma; words in italics 

are semantically relevant to mb.  

 

! !  ! !  Type Sentence Amb. Dist. Funni. 

hare hair 

Pun The magician got so mad he pulled 

his hare out. 

0.15 7.87 1.71 

Non The hare ran rapidly through the 

fields. 

1.43E-5 7.25 -0.40 

tooth truth  

Pun A dentist has to tell a patient the 

whole tooth. 

0.1 8.48 1.41 

Non A dentist examines one tooth at a 

time. 

8.92E-5 7.65 -0.45 
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Figure 1. Graphical representation of a generative model of a sentence. If the indicator variable ! !  

has value 1, ! !  is generated based on semantic relatedness to the sentence meaning ! ; 

otherwise, ! !  is sampled from a trigram language model based on the immediately preceding 

two words. 
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Figure 2. Standard error ellipses of ambiguity and distinctiveness for each sentence type. Puns 

(both identical and near homophone) score higher on ambiguity and distinctiveness; non-pun 

sentences score lower. 
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Figure 3. Average funniness ratings and distinctiveness of 145 pun sentences binned according to 

distinctiveness quartiles. Error bars are confidence intervals. 
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