
Learning Structured Generative Concepts
Andreas Stuhlmüller, Joshua B. Tenenbaum, Noah D. Goodman

Brain and Cognitive Sciences, MIT
{ast, jbt, ndg}@mit.edu

Abstract

Many real world concepts, such as “car”, “house”, and “tree”,
are more than simply a collection of features. These objects
are richly structured, defined in terms of systems of relations,
subparts, and recursive embeddings. We describe an approach
to concept representation and learning that attempts to capture
such structured objects. This approach builds on recent proba-
bilistic approaches, viewing concepts as generative processes,
and on recent rule-based approaches, constructing concepts in-
ductively from a language of thought. Concepts are modeled
as probabilistic programs that describe generative processes;
these programs are described in a compositional language. In
an exploratory concept learning experiment, we investigate hu-
man learning from sets of tree-like objects generated by pro-
cesses that vary in their abstract structure, from simple proto-
types to complex recursions. We compare human categoriza-
tion judgements to predictions of the true generative process as
well as a variety of exemplar-based heuristics.

Introduction
Concept learning has traditionally been studied in the con-
text of relatively unstructured objects that can be described
as collections of features. Learning and categorization can be
understood formally as problems of statistical inference, and
a number of successful accounts of concept learning can be
viewed in terms of probabilistic models defined over different
ways to represent structure in feature sets, such as prototypes,
exemplars, or logical rules (Anderson, 1990; Shi, Feldman,
& Griffiths, 2008; Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008). Yet for many real world object concepts, such as
“car”, “house”, “tree, or “human body”, instances are more
than simply a collection of features. These objects are richly
structured, defined in terms of features connected in systems
of relations, parts and subparts at multiple scales of abstrac-
tion, and even recursive embedding (Markman, 1999). A tree
has branches coming out of a trunk, with roots in the ground;
branches give rise to smaller branches, and there are leaves
at the end of the branches. A human body has a head on top
of a torso; arms and legs come out of the torso, with arms
ending in hands, made of fingers. A house is composed of
walls, roofs, doors, and other parts arranged in characteristic
functional and spatial relations that are harder to verbalize but
still easy to recognize and reason about. Besides objects, ex-
amples of structured concepts can be found in language (e.g.
the mutually recursive system of phrase types in a grammar),
in the representation of events (e.g. a soccer match with its
fixed subparts), and processes (e.g. the recipe for making a
pancake with steps at different levels of abstraction).

Such concepts have not been the focus of research in the
probabilistic modeling tradition. Here we describe an ap-
proach to representing structured concepts—more typical of
the complexity of real world categories—using probabilistic

generative processes. We test whether statistical inference
with these generative processes can account for how people
categorize novel instances of structured concepts and com-
pare with more heuristic, exemplar-based approaches.

Because a structured concept like “house” has no single,
simple perceptual prototype that is similar to all examples,
learning such a concept might seem very difficult. However,
each example of a structured concept itself has internal struc-
ture which makes it potentially very informative. Consider
figure 1, where from only a few observations of a concept it
is easy to see the underlying structural regularity that can be
extended to new items. The regularities underlying structured
concepts can often be expressed with instructions for gener-
ating the examples: “Draw a sequence of brown dots, choose
a branch color, and for each brown dot draw two dots of this
color branching from it.”

Figure 1: Three examples of a structured concept described by a
simple generative process.

We build on the work of Goodman, Tenenbaum, et al.
(2008), who introduced an approach to concept learning as
Bayesian inference over a grammatically structured hypoth-
esis space—a “language of thought.” Single concepts ex-
pressed in this language were simple propositional rules for
classifying objects, but this approach naturally extends to
richer representations, providing a concept learning theory
for any representation language. Here we consider a language
for generative processes based on probabilistic programs: in-
structions for constructing objects, which may include prob-
abilistic choices, thus describing distributions on objects—in
our case distributions on colored trees. Because this language
describes generative processes as programs, it captures regu-
larities as abstract as subparts and recursion.

The theory of concept representation that we describe here
shares many aspects with previous approaches to concepts.
Like prototype and mixture models (Anderson, 1990; Grif-
fiths, Canini, & Sanborn, 2007), probabilistic programs de-
scribe distributions on observations. However, prototypes and
mixtures generate observations as noisy copies of ideal pro-
totypes for the concept and thus cannot capture more abstract
structures such as recursion. Like rule-based models of con-
cept learning, our approach supports compositionality: com-
plex concepts are composed out of simple ones—but rather

than deterministic rules, our concepts denote distributions.
Finally, the probabilistic program approach can be seen as a
generalization of previous approaches to generative represen-
tations of concepts (Kemp, Bernstein, & Tenenbaum, 2005;
Rehder & Kim, 2006; Feldman, 1997).

We investigate human learning for classes of generating
processes that vary in their abstract structure, from simple
prototypes to complex multiply recursive programs. We com-
pare predictions for categorization judgments based on the
true generative model to the predictions of exemplar models,
which exploit the relational structure of the examples to vary-
ing degrees but cannot detect more abstract structure. We
find two regimes: for concepts with simple prototype-like
structures, human judgements are well described by a rela-
tional exemplar model, but humans can also easily learn more
abstract regularities—such as sub-concepts and recursion—
which are better captured by a model using more expressive
generative descriptions based on probabilistic programs.

Formal Framework
In the following, we first explain the formal language we use
to describe generative processes, then the different methods
of categorization (or generalization) we compare to subjects’
judgements.

Concept Representation
We analyze concepts as generative models, i.e. as formal de-
scriptions of processes that generate observations. We do so
within a simple domain where we can fully know and manip-
ulate the actual generating processes behind complex objects.
We use tree-structured graphs with colored nodes as observa-
tions in our experiments—these are a simple proxy for many
real-world concepts, where the dependencies among parts are
hierarchical or tree-like. Human bodies, buildings, and events
all consist of parts that themselves contain parts, with each
part standing in interesting relation to the others.

We represent these trees as nested lists: each list denotes
a tree, with the first element in the list specifying the color
of the root node and the remaining elements describing the
children of this node, each child itself being a list (tree). For
example, the second tree shown in figure 1 can be represented
as (́• (•) (• (•) (•)) (•)).

We formalize the processes that generate these obser-
vations using a subset of Church, a Lisp-like stochas-
tic programming language1 (Goodman, Mansinghka, Roy,
Bonawitz, & Tenenbaum, 2008). Programs in Church de-
scribe processes that produce values; running a program cor-
responds to generating a value from such a process. Because
Church contains primitive functions that randomly choose
from a distribution on values (e.g. the function flip that ran-
domly chooses true or false), Church programs describe
stochastic processes. The meaning of a Church program is

1Church uses prefix notation, i.e. function application is written
with the operator first, the operands following. For example, (node
x y) means that the function node is called with the arguments x and
y.

a distribution on return values—which may be complex val-
ues such as nested lists—and any given execution results in
a sample from this distribution. In what follows we describe
Church programs which sample colored trees.

We group generative models into classes by the abstract
constructions they use. Table 1 illustrates each of these types
using a single concept program and observations drawn from
this program. The simplest tree-generating processes in our
language use only the stochastic function node, which takes
as its first argument a color symbol and as its remaining ar-
guments subtrees. With high probability, node returns a tree
that has the given color symbol at its root and the given sub-
trees as its children, but with some probability ε, it switches
to a noise process that can return any tree, that is, node in-
troduces a random noise process into the tree construction.
Under the noise process, the number of children for a node is
sampled from a geometric distribution with parameter ε and
the node color is sampled uniformly.

Programs like (node • (node •) (node •)) denote
stochastic prototypes. They are most likely to gener-
ate the tree that corresponds to the given colors, in this
case (́• (•) (•)), but they can return any tree with a certain
probability. The more a tree deviates from the prototype, the
less likely this process is to generate it. For example, the
simple program described above could switch at the third
node to the noise process and produce (́• (•) (• (•)))
instead of the prototype. By introducing the noise process,
node turns a deterministic prototype into a stochastic process.

All of the more abstract ways of formalizing generative
models in our tree domain compose these basic processes.
Nested prototypes formalize the intuition that a concept or a
part of a concept can be “either this or that”. Running the
program (if (flip .5) (node •) (node •)) will flip a fair
coin and return a sample from (node •) with probability .5,
otherwise a sample from (node •).

One of the central reasons for analyzing concepts as
represented in a language of thought is that they com-
pose analogously to the components of natural and artificial
languages—parts similarly allow composition through reuse
in our domain. A part concept is defined first and can then
be used in arbitrarily many places within other concepts. For
example, the program (define (part) (node • (node •)))
names a simple part consisting of only two nodes. This
part can now be reused in other concepts. For example,
the most likely return value for (node • (part) (part))
is (́• (• (•)) (• (•))). When parts are defined, they are
available to the noise process. This leads to some invariance
to the position of parts and captures the idea that a generating
process may give rise to observations that contain a part in a
different place, although with lower probability compared to
an observation with the part in the correct place.

Parameterized parts can capture both deterministic struc-
ture and random choices and reuse them in multiple places.
When a part like (define (part x) (node • x x)) is used,
for example in the program (part (node •)), it evaluates

the body of the part—here (node • x x)—with x assigned to
its argument, here (node •). Evaluating the program (part
(node •)) is therefore most likely to result in the observa-
tion (́• (•) (•)).

Allowing parts to call themselves introduces recursion,
a means to capture a large amount of repetitive observed
structure in a single short definition. For example, the part
(define (p) (if (flip) (node •) (node • (p)))) can gen-
erate arbitrarily deep lists of single blue nodes, with shorter
ones being more likely.

The power of these program constructs is that they may be
used compositionally to build more complex concepts, such
as those shown in table 1.

Categorization
In order to model generalization and categorization behav-
ior of human subjects, we need not only a way to represent
concepts, but also a way to compute the probability of any
given observation belonging to a known concept. We analyze
our experimental results using four models that differ in how
much they make use of representational structure.

On the unstructured end of the scale, we use a model that
computes generalization judgements solely by comparing the
fraction of nodes that have a given color. On the other end of
the scale, a generative Bayesian model uses the likelihood un-
der the true generative process to judge category membership.
In between, an exemplar model makes use of tree structure in
the observations, but not of the more abstract generative pro-
cess that led to the observations.

Generative Model In modeling concept learning as
Bayesian program induction, we follow the approach taken
by Goodman, Tenenbaum, et al. (2008). Since we formalize
concepts as probabilistic programs, the likelihood P(O|C) of
an observation O under a given concept C corresponds to the
probability of the program making its random choices such
that it returns the observation as its value (see Goodman,
Mansinghka, et al. (2008)). The posterior probability of a
concept C given observations O is proportional to this likeli-
hood multiplied by the prior:

P(C|O) ∝ P(O|C)P(C) (1)

In the last section, we described a language for programs
which generate trees; a prior P(C) could be derived from this
language, as in Goodman, Tenenbaum, et al. (2008). An ideal
learner would then infer the posterior distribution P(C|O)
over concepts C given the observation O and make predic-
tions about whether a new observation t belongs to the cat-
egory of the observed objects using each concept C ∈ C in
proportion to its posterior probability:

P(t|O) ∝ ∑
C

P(t|C)P(C|O) (2)

In order to make computational modeling tractable, we
make the simplifying assumptions that (1) subjects’ reasoning
is dominated by the maximum a posteriori (MAP) estimate of

this distribution, i.e. by the single concept that has the highest
posterior probability and that (2) the true generating concept
Ctrue is a good approximation to the MAP estimate. Thus, for
each of the concept types we investigate, we model subjects’
behavior using the program from which the training data was
sampled. The likelihood of a new observation t belonging to
this concept is simply P(t|Ctrue) which we compute using an
adaptive importance sampling algorithm.

We do not claim that subjects necessarily identify the true
generating concept from a few examples; this approximation
is made for computational tractability. The full Bayesian
model, which maintains uncertainty over generating con-
cepts, can make different predictions in certain cases, but it
is not clear whether this represents a bias for or against the
approximation—to the extent that people remain uncertain of
the concept after a few examples, the Bayesian model would
capture human inferences better than our approximation.

Tree Exemplar Model This and the next two models are
versions of the exemplar-based generalized context model
(GCM) (Nosofsky, 1986). For observations O1, . . . ,On from
category C and a new observation t for which we would
like to estimate the likelihood under category C, we use
P(t ∈ C|O1, . . . ,On ∈ C) ∝

1
n ∑

n
i=1 e−d(Oi,t) where d is a dis-

tance measure that is sensitive to the tree structure of the ob-
servations. Starting from the root node, this measure matches
the trees as much as possible, incrementing by 1 for each node
that differs in color between the two trees and for each node
that must be generated because it exists in one tree but not in
the other tree. This approach is similar to the structure map-
ping approach used by Tomlinson and Love (2006).

Frequency-based Exemplar Models As in the tree exem-
plar model, we use a distance measure d to estimate the like-
lihood of an observation belonging to a category for which
we have only positive examples. In this version of the model,
d(t1, t2) is the RMSE between the transition count vectors of
t1 and t2. For each pair of node colors, the transition count
vector contains the number of times this pair occurs adjacent
(as parent-child) in the given tree. We call this model Transi-
tion GCM. We also investigate a simplified version that uses
the distance between the color count vectors. The length of
this vector corresponds to the number of possible node colors,
with each entry in the vector denoting how often this node
color appears in the tree of interest. We call this Set GCM.

Experiment

This experiment is an exploratory investigation into gener-
alization from observations of structured objects. Since our
main goal in this study is to investigate the representation
of concepts and their use for categorization and generaliza-
tion rather than the memory aspects of learning, we use a
paradigm that minimizes memory demands. By doing so,
we hope to focus on how people represent the commonalities
between observed instances of a concept and how they use
this knowledge to generalize to new instances. We chose a

Prototype Nested Prototype Parts Parameterized
Parts

Single Recursion Multiple
Recursion

(node •
(node •
(node •
(node •)
(node •))))

(node •
(node •
(node •
(if (flip .5)

(node •
(node •)
(node •

(node •
(node •))

(node •)))
(node •

(node •)
(node •

(node •))
(node •))))))

(define (part)
(node •
(node •

(node •))))

(node •
(part)
(node •
(node •

(part))
(part)))

(define (part x)
(node •

x
(node •
x
(node •
x
(node • x x)
x)

x)
x))

(part
(if (flip .5)

(node •)
(node •)))

(define (part)
(node •

(if (flip .5)
(node •
(part)
(node •))

(node •))))

(node •
(node •

(node •)
(node •))

(part))

(define (part)
(node •
(if (flip .3)

(part)
(node •))

(if (flip .3)
(part)
(node •))))

(node •
(node •

(node •
(part)))

(part))

Table 1: This table illustrates the concept types that can be represented within our language for generative models. For each type, an example
of a concept (a stochastic program) is shown together with observations drawn from this program. The stochastic function node generates
a mixture of the subtrees that are passed to it as its arguments and a noise process that, with low probability, can generate any tree. The
abstraction methods stochastic branching, (parameterized) parts and recursion compose these stochastic prototypes into more structured
generative processes.

domain that both contains observations with simple structure
and allows for interesting generative processes—the domain
of colored trees generated by probabilistic programs.

Methods

Participants 250 members of Amazon’s crowdsourcing
service Mechanical Turk took part in the online experiment.
Subjects were compensated for participation.

Stimuli Subjects were told that they are looking at newly
discovered kinds of plants that grow in extreme environments.
Each subject saw 18 pages, with each page consisting of 15
training examples, a control question, and a test example to-
gether with a classification question. Both training and test
examples were images of simple trees with colored nodes
drawn from tree-generating programs (see e.g. table 3). For
each of the concept types shown in table 1, there were three
tree-generating programs, and for each program there were 7
test examples. These test examples were chosen to cover a
wide range of both intuitive and model judgements of cate-
gory membership. Both training example order and stimuli
colors were randomized.

Procedure In order to ensure that subjects process the train-
ing stimuli, a control question on each page asked how many
of the training trees consist of more than 7 dots. 55 subjects
answered less than 13 out of the 18 control questions cor-
rectly within an error margin of 2. We did not include these
subjects in the analysis.

The categorization question asked: “How likely is it that
the following plant is the same kind of plant as the plants
above?” Subjects chose on a seven-step scale ranging from
“certainly the same kind” to “certainly not the same kind”.
For each subject, the responses were normalized to [0,1].

Results
Table 2 summarizes the correlation results for all models.
Figure 2 shows for each concept type human results and
model results for both the exemplar and generative model.
For each concept type, three different concepts were part of
the experiment, and for each concept, seven different test ob-
servations were shown. A single point in the scatterplot con-
tains information on the mean subject response for a single
test tree and on the model prediction for this tree.

Neither of the two exemplar models based on simple statis-

●
●

●
●

●

●

●

0.0 0.4 0.8

−8
−4

Prototype

Human Judgement

G
C

M
 L

og
 S

co
re

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

0.0 0.4 0.8
−8

−4

Nested Prototypes

Human Judgement

●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

0.0 0.4 0.8

−1
4

−8
−4

Parts

Human Judgement

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

0.0 0.4 0.8

−1
4

−8
−2

Parameterized Parts

Human Judgement

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

0.0 0.4 0.8

−1
5

−5

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

0.0 0.4 0.8

−3
0

−1
5

●

●
●

●

●

●●

●●

●

● ●

●

●

●
●

●

●

●

●

●

0.0 0.4 0.8

−5
0

−3
0

−1
0

G
en

er
at

ive
 L

og
 S

co
re

●

●

●

●
●

●
●

●●

●●
●

●

●

●

●

●●●

●

●

0.0 0.4 0.8

−5
0

−2
0

0

●

●

●

●

● ●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

0.0 0.4 0.8

−7
0

−4
0

−1
0

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

0.0 0.4 0.8

−6
0

−3
0

0 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

0.0 0.4 0.8

−7
0

−4
0

−1
0

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

0.0 0.4 0.8

−1
00

−4
0

0 ●

●

●

●

●

●●
●●

●

●

●
●

●

Single recursion Multiple Recursion

Figure 2: Comparison between human and model responses across concept types for tree exemplar and generative model. For each of the
six concept types, three examples were shown; the color of the dots indicates to which example any given datapoint belongs. Empty circles
denote isolated part cases that were excluded from the correlation analysis.

Set
GCM

Transition
GCM

Tree
GCM

Generative
Model

Prototype 0.589 0.751 0.803 0.748
Nested Prototype 0.544 0.851 0.937 0.904
Parts* 0.320 0.617 0.705 0.835
Parameterized
Parts

0.298 0.591 0.778 0.911

Single Recursion 0.284 0.499 0.637 0.773
Multiple
Recursion

0.505 0.561 0.451 0.770

Table 2: Human-model correlations for the experiment. Each row
shows how well the different models predicted subjects’ perfor-
mance for a particular concept type. *Correlations excluding iso-
lated part cases (see text).

tics was the best predictor for any of the concept types, with
the transition-based exemplar model performing strictly bet-
ter than the set-based model. An effect that is not accounted
for by the less structural exemplar models is illustrated by
the nested prototype example in table 3: Subjects generalize
significantly more to examples with branches they have seen
before than to examples that have a mixture of two known
branches. Likewise, subjects seem to generalize significantly
more to trees with known branches than to trees that have new
branches with similar surface statistics. Both results are ex-
pected under the two models that make use of tree structure.

If we group prototype and nested prototype as “less struc-
tured” and subconcepts with and without arguments, single
recursions, and multiple recursions as “more structured”, then
the tree exemplar model best predicts human responses for
the less structured stimuli whereas the true generative model
best predicts performance for the more structured stimuli.

Our generative model makes the simplifying assumption
that the learner infers a single generating concept from the ex-
amples whereas one interpretation of the tree exemplar model
is that it uses each of the training examples as a hypothesis
on what the true concept looks like. A fully Bayesian learner,
which maintains a distribution over generative processes, may

predict human behavior in ways similar to the tree exemplar
model for less structured examples and similar to the true gen-
erating process model for the more structured examples.

Having seen how different models predict human judge-
ments for different concept types, we will now look at indi-
vidual response patterns in order to determine ways in which
both of the two structural models can be improved.

The part example in table 3 shows how changes to the lo-
cation of a part can have significantly different effects de-
pending on whether the overall concept is preserved (result-
ing in high generalization) or the part is moved into a com-
pletely different environment (resulting in low generaliza-
tion). By analogy, a Picasso face, with eyes in odd places,
is still more of a face than an eye alone. Parts seen out of
context constitute a problem for all models (except for the
simplest set-based one): subjects judged these isolated parts
as unlikely to come from the concept that included them as
subparts whereas the models did give a high score to these ex-
amples. Since including these outliers dramatically changed
the scores and made the interpretation of the model compar-
ison difficult, we excluded these data points from the analy-
sis in table 2. Without correction, the model-human correla-
tions for the part concepts are: 0.403 for the set-based exem-
plar model, 0.505 for the transition exemplar model, 0.512
for the tree-based exemplar model, and 0.543 for the genera-
tive model (note that rank-order among the models does not
change as a result of excluding these data points).

For the parameterized part example in table 3, changing the
argument uniformly, i.e. in all places where it occurs, leads
to consistently higher scores than changing the argument dif-
ferently in different places; however, this difference is not
significant. This difference is expected if subjects inferred
the true generative model, since changes to the argument re-
quire only one use of the noise process, whereas nonuniform
changes require many different nodes to be generated by the
noise process. Future research needs to determine whether
this effect is real, perhaps by manipulating the diversity of

Concept
Type

Nested Prototypes Parts Parameterized
Parts

Single Recursion Multiple
Recursion

Training

.

Test

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

**

**

Table 3: This table illustrates a small selection of our experimental results. For five different concept types, training observations from a
single concept of this type are shown together with subjects’ generalizations for particularly interesting test examples. The error bars are
standard errors of the mean.

parameter arguments in the observations.
For the single recursion example in table 3, changing the

color of a few nodes within the recursion results in a signif-
icantly lower generalization. At the same time, a very sim-
ilar manipulation does not result in a significant change in
the generalization rating for the multiple recursion example.
Intuitively, we sometimes see a change as destroying a very
obvious pattern structure whereas at other times, the change
in structure is not assumed to be relevant. Future research
needs to characterize when subjects infer that such a pattern
exists, and when they instead assume coincidence.

The comparison between the frequency based exemplar
models and the two models that rely on tree structure in the
observations makes clear that subjects do make use of the
fact that the observations are structured in their generaliza-
tion judgements. Furthermore, comparing the tree exemplar
model to the true generative model that makes use of more ab-
stract structure hints at the possibility that subjects are relying
on recursive structure in the observations. The individual re-
sponse patterns in the results of our exploratory experiment
highlight ways in which both the exemplar-based model and
the generative model can be improved to more closely reflect
human generalization patterns.

Conclusion
Most studies of concept learning have focused on relatively
unstructured objects based on simple features. We have sug-
gested viewing concepts as probabilistic programs that de-
scribe stochastic generative processes for more structured ob-
jects. In this view concepts denote distributions over objects,
and these distributions are built compositionally. We explored
this idea within a domain of tree-like objects, and carried out
a study of human generalization using a broad variety of con-

cepts in this domain. Our results suggest that humans are
able to extract abstract regularities, such as recursive struc-
ture, from examples, but also that there are many subtle ef-
fects to be discovered and accounted for in such domains.

Acknowledgements We thank Frank Jäkel and Brenden
Lake for useful comments. This work was funded in part
by grants from the ONR (N00014-09-0124) and the AFOSR
(FA9550-07-1-0075).

References
Anderson, J. (1990). The adaptive character of thought.
Feldman, J. (1997). The structure of perceptual categories. Journal

of Mathematical Psychology.
Goodman, N. D., Mansinghka, V., Roy, D. M., Bonawitz, K., &

Tenenbaum, J. B. (2008). Church: a language for generative
models. Proceedings of the 24th Conference in Uncertainty in
Artificial Intelligence, 220–229.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L.
(2008). A rational analysis of rule-based concept learning. Cog-
nitive Science, 32(1), 108–154.

Griffiths, T., Canini, K., & Sanborn, A. (2007). Unifying ratio-
nal models of categorization via the hierarchical dirichlet process.
Proceedings of the 29th Annual Conference of the Cognitive Sci-
ence Society.

Kemp, C., Bernstein, A., & Tenenbaum, J. (2005). A generative
theory of similarity. Proceedings of the Twenty-Seventh Annual
Conference of the Cognitive Science Society.

Markman, A. (1999). Knowledge representation.
Nosofsky, R. (1986). Attention, similarity, and the identification-

categorization relationship. Journal of Experimental Psychology:
General, 115(1), 39–57.

Rehder, B., & Kim, S. (2006). How causal knowledge affects clas-
sification: A generative theory of categorization. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition.

Shi, L., Feldman, N., & Griffiths, T. L. (2008). Performing bayesian
inference with exemplar models. Proceedings of the 30th Annual
Conference of the Cognitive Science Society, 745–750.

Tomlinson, M., & Love, B. (2006). From pigeons to humans:
Grounding relational learning in concrete examples. Proceedings
of the National Conference on Artificial Intelligence, 21(1), 199.

	Introduction
	Formal Framework
	Concept Representation
	Categorization

	Experiment
	Methods
	Results

	Conclusion
	References

