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Abstract
An essential part of cognitive science is designing experiments
that distinguish competing models. This requires patience and
ingenuity—there is often a large space of possible experiments
one could run but only a small subset that might yield informa-
tive results. We need not comb this space by hand: If we use
formal models and explicitly declare the space of experiments,
we can automate the search for good experiments, looking for
those with high expected information gain. Here, we present
an automated system for experiment design called webppl-oed.
In our system, users simply declare their models and experi-
ment space; in return, they receive a list of experiments ranked
by their expected information gain. We demonstrate our sys-
tem in two case studies, where we use it to design experiments
in studies of sequence prediction and categorization. We find
strong empirical validation that our automatically designed ex-
periments were indeed optimal.

Introduction
Cognitive scientists often design experiments to test compet-
ing computational models. Good experiments are ones where
the models make different predictions, but there is typically
a large space of possible experiments one could run (e.g.,
there could many different possible stimulus sets to present).
Rather than systematically search the experiment space, sci-
entists often rely on intuition to design experiments where
models sufficiently diverge. This intuition may be biased in
a number of ways, such as towards experiments that show
qualitative differences between models even when more in-
formative quantitative differences may exist.

In principle, there is a better way—if we formally declare
the space of models and space of experiments, optimal ex-
periment design (OED) allows us to automate the search for
good experiments (i.e., ones that strongly update our beliefs
about a scientific question). However, while the mathemat-
ical foundations of OED are fairly straightforward (Lindley,
1956), it has not enjoyed widespread use in practice. Some
OED systems are too specialized for general use; others are
more general but require too much statistical and computa-
tional know-how to be widely adopted (e.g., users must sup-
ply their own objective function and derive a solution algo-
rithm for it). In this work, we describe an automated system
that is both general and practical—the user writes the compet-
ing models and space of possible experiments in a common
language; a set of potentially informative experiments is then
computed with no further input from the user.

We first describe our framework in general terms and then
apply it in two case studies. First, we consider the problem
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of distinguishing three toy models of human sequence predic-
tion. Second, we go beyond toy models and analyze a classic
paper (Medin & Schaffer, 1978) on human category learning
that compared two models using a hand-designed experiment.
Our OED system discovers experiments that are several times
more effective (in an information-theoretic sense) than the
original. Our work opens a number of rich areas for future
development, which we explore in the discussion.

Experiment design framework
Imagine that we are studying how people predict elements
in a sequence (e.g., flips of a possibly-trick coin). We want
to compare two cognitive models of people’s behavior: mfair,
where people believe the coin is unbiased (i.e., H and T are
equally likely), and mbias, where people believe the coin has a
bias that is unknown to them. A priori, one model is not pre-
ferred over the other; in Bayesian terms, we have a uniform
prior on the models. We wish to update our beliefs about
these models through an experiment where we show people
4 flips of the same coin and ask them to predict what will
happen on the next flip. There are 16 possible experiments
(i.e., sequences of H and T for the 4 flips);1 as each participant
responds by predicting either H or T, there are 2n possible out-
comes for n participants. The models predict how people will
respond in an experiment (i.e., after seeing some particular
sequence of flips). Formally, a model defines a probability
distribution on {H, T}n conditional on the experiment x. For
convenience, we write our models in terms of what a single
person would do and assume that all people respond accord-
ing to the same model, i.e., participant responses are i.i.d.2

Should we run experiment HHTT? mfair always predicts H and
T with equal probability; for this experiment, mbias learns that
the bias favors H and T equally, and thus also makes the same
prediction. Regardless of the observed outcome (person pre-
dicts H or T), the data cannot update our beliefs about the mod-
els, so this is a poor experiment. By contrast, the experiment
HHHH would be much more informative. Under mfair, p(H) = 1

2
but under mbias, p(H) = 5

6 (this is the updated probability of
heads after estimating the coin bias). In this case, either ex-
perimental response would be informative. If the participant
predicted heads, this would favor mbias and if she predicted

1 Our notion of “experiment” is quite general, including tradi-
tional components like stimulus properties (e.g., coin sequence) as
well as other components like dependent measure and sample size.

2 We use this simple linking function throughout this paper but
our approach handles arbitrary linking functions (e.g., hierarchical
models with participant-wise parameters).



tails, this would favor mfair. HHHH is a better experiment than
HHTT for disambiguating the models. The goal of OED is to
automate this kind of reasoning.

Now, we provide formal details. We wish to compare a set
of models M in terms of how well they account for empiri-
cal data. A model m is a conditional distribution Pm(Y | X)
representing the likelihood of empirical results y for different
possible experiments x. We adopt a Bayesian model compar-
ison approach—we start with a prior on models P(M) and
seek an experiment whose result will maximally update this
prior. A priori, we do not know what will happen if we run
experiment x. If we were to actually run x and obtain result y,
then we could measure actual information gain (AIG) by:

AIG(x) = DKL(P(M | Y = y,X = x) ‖ P(M)) (1)

where DKL is KL-divergence. We can compute the expected
information gain (EIG) of x by imagining hypothetical dif-
ferent experimental results and combining them—that is, we
can marginalize over y:

EIG(x) = Ep(y;x)DKL(P(M | X = x,Y = y) ‖ P(M)) (2)

where p(y;x) is the probability of observing y for x. If we
believe that M contains the true model of the data, then a suit-
able choice for p(y;x) is the predictive distribution implied by
the models: p(y;x) = Ep(m)pm(y | x). If, however, we believe
that M does not contain the true model, then an uninformative
distribution p(y;x) ∝ 1 may be more appropriate.

Note that we commit to a Bayesian approach only for
model comparison; the models themselves need not be
Bayesian nor even probabilistic. If the models define a prob-
ability distribution specifying predictions for different exper-
iments, they can be be used without further assumptions.
Models that make deterministic predictions can be made into
such a probability distribution by having predictions serve as
the mean of subjects’ responses with actual responses being
normally-distributed around this value; indeed, this implicit
assumption underlies standard data analysis used for such
models. Finally, OED does not need to do exact Bayesian
computation to be useful—approximate OED can still find
experiments that outperform those designed by hand.

Writing models as probabilistic programs
Models are probability distributions. As such, we have the
user express their models in a programming language where
probability distributions and operations on them are first-class
objects. In particular, we use WebPPL (webppl.org), a small
but feature-rich probabilistic programming language embed-
ded in Javascript (Goodman & Stuhlmüller, 2014). WebPPL
supports sampling from primitive probability distributions
and combining these samples in various ways, e.g., adding
Gaussian noise to a Binomial random variable:
var g = function () {

var x = sample(Binomial ({n: 4, p: 0.5}))
var y = sample(Gaussian ({mu: 0, sigma: 1}))
x + y // function returns its last expression

}
Infer(g)

The function g defines a sampling procedure for our com-
pound distribution. This implicitly represents a probability
distribution; to reify this into an actual distribution, we must
perform inference via Infer(g, options). This separation be-
tween what we wish to compute from how we try to compute
it is useful when writing larger, more complex models. Note
that in the above snippet, and throughout, we omit the options

object, which specifies which inference algorithm to use.3

WebPPL also supports expressing conditional probability
distributions. For instance, in the model above, we might ask
what values of x and y could lead their sum to be greater than
or equal to 2:

var g = function () {
var x = sample(Binomial ({n: 4, p: 0.5}))
var y = sample(Gaussian ({mu: 0, sigma: 1}))
condition(x + y >= 2)
[x, y]

}
Infer(g)

Here, condition rejects any states where x+ y < 2.
Given a set of competing models written as WebPPL func-

tions, a space of possible experiments (inputs to the models),
and expectations about the results for different experiments
(i.e., p(y;x), again written in WebPPL), our system webppl-oed

searches for experiments that have high EIG as defined in
Eq. 2. In abstract terms, webppl-oed calculates EIG(x) by
sampling imagined experiment results from p(y;x). For each
sample y, it performs inference to obtain a posterior distribu-
tion on models and then measures the KL divergence of this
posterior from the prior. The average of these KL divergences
is an estimate of EIG. The main bottleneck in this process is
posterior inference, which takes a good deal of expertise to
implement correctly and is also computationally challenging.
webppl-oed insulates end users from these technical concerns,
allowing them to concentrate on scientific questions rather
than engineering details. The software is available online at
github.com/mhtess/webppl-oed. We next demonstrate it by using
it to distinguish toy models of sequence prediction.

Case study 1: Sequence prediction
Human judgments about sequences are surprisingly system-
atic and nonuniform across equally likely outcomes – for ex-
ample, we might strongly believe the next coin flip in the se-
quence HHTTHHTT will be H, whereas the sequence THHTHTHT is less
suggestive of a particular next outcome. Several hypotheses
have been articulated about what underlies human intuitions
about such sequences (Falk, 1981; Goodfellow, 1938; Grif-
fiths & Tenenbaum, 2004). Here, we consider three simple
models of people’s beliefs: (a) Fair coin: people assume the
coin is fair, (b) Bias coin: people believe the coin has some
unknown bias that they can estimate from data (i.e., learning
the probability of an H outcome), (c) Markov coin: people be-
lieve the coin has some probability of transitioning between
spans of H and T outcomes, also learnable from observations.

3 WebPPL currently provides these inference algorithms:
MCMC (MH, HMC), SMC, enumeration, and variational inference.



As in our earlier example, we consider an experimental setup
where participants see four flips of the same coin and must
predict the next flip.

Formalization

The model space M is {mfair,mbias,mmarkov}. For now, we as-
sume that the experiment will collect data from just a single
participant, so the experiment space X is the Cartesian prod-
uct {1}×{H,T}4 representing the fixed sample size of 1 and
sequence space. Finally, Y is the response set {H,T}1.

Under mfair, people assume that the coin always has an
equal probability of coming up heads or tails:

var fairCoin = function(seq) {
Infer(function (){ flip (0.5) })

}

Here, flip(0.5) is shorthand for sample(Bernoulli(p:0.5)).
Note the type signature of this model—it takes as input an
experiment (seq) and returns a distribution on possible results
of that experiment (the output of flip(..)).

Under mbias, people assume that the coin has some un-
known bias, learn it from past observations4, and use it to
predict the next flip:

var coinWeights = [0.01, 0.10, 0.20, ..., 0.90, 0.99];
var biasCoin = function(seq) {

Infer(function (){
var w = uniformDraw(coinWeights)
var biasedCoinFlip = function (){ flip(w) }
var predictedSeq = repeat(seq.length ,biasedCoinFlip)
condition(arrayEquals(seq ,predictedSeq))
biasedCoinFlip ()

})
}

Under mmarkov, people assume that the flips are generated by a
Markov process with transition probability p, which is learned
from past observations:

var markovCoin = function(seq1) {
Infer(function (){

var p = uniformDraw(coinWeights)
var markovFlip = function(lastFlip) {

flip(p) ? !lastFlip : lastFlip
}
var sampleSeq = function(n, seqSoFar) {

if (n == 0) {
seqSoFar

} else {
var nextFlip = markovFlip(last(seqSoFar))
var nextSeq = append(seqSoFar , nextFlip)
sampleSequence(n - 1, nextSeq)

}
}
var seq2 = sampleSeq(seq1.length - 1, [flip (0.5)])
condition(arrayEquals(seq1 , seq2))
markovFlip(last(sampledSeq))

})
}

4 The line that uses condition constrains likely values of the coin
weight—this mechanism is used to represent learning in Bayesian
models of cognition. For more, see the Learning as Conditional In-
ference chapter of the online textbook http://probmods.org.

Predictions of optimal experiment design
Using a uniform distribution for p(y;x), we ran OED for

three different model comparisons: fair–bias, bias–Markov,
and fair–bias–Markov and planned to collect data from 20
participants (rather than 1).5 We run OED by writing:

var n = 20,
fairGroup = groupify(fairCoin),
biasGroup = groupify(biasCoin)

OED({
M: function () { uniformDraw ([fairGroup , biasGroup ]) },
X: function () {

{n: n, seq: uniformDraw (["HHHH" ,...,"TTTT"])}
},
Y: function(x) { randomInteger(n + 1) }

})

We define a uniform prior on models M, an experiment space X

with a fixed number of subjects and all valid coin sequences,
and a result space Y, which is the uninformative prior over
the number of H responses. The results of different model
comparisons are below:
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Figure 1: Results for sequence prediction model comparisons

Consider the fair–bias comparison (Fig. 1, left). Several
experiments have 0 information gain (e.g., HTHT)—the models
make exactly the same predictions in this case (albeit for dif-
ferent reasons, as discussed earlier), so the experiment has no
distinguishing power. The best experiments are HHHH and TTTT.
This is intuitive—the bias model infers a strongly biased coin
and makes a strong prediction, while the fair coin model is
unaffected by past observations.

In the bias–Markov comparison (Fig. 1, middle), the best
and worst experiments actually reverse. Now, HHHH and TTTT

are the least informative (because, as before, the models
make similar predictions here), whereas HTHT and THTH are the
most informative. This makes sense—the bias model learns
a weight of 0.5 and so assigns equal probability of heads and

5 Our models are of a single subject but we lift each
single-participant model into a model of group responses
using an i.i.d. linking function that we call groupify:
var groupify = function(model) {

var groupified = function(x) {
var sequence = x.sequence , n = x.n;
var singleModel = model(sequence);
var p = Math.exp(singleModel.score(true))
Binomial ({n: n, p: p})

}
groupified

}

Here, singleModel.score(true) returns the log-probability of the value
true under the singleModel distribution.
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Figure 2: Top three experiments in three-way model compar-
ison: (a) model predictions and (b) EIG versus sample size.

tails to the next flip, whereas the Markov model learns that
the transition probability is high and assigns high probability
to the opposite of the most recent flip (T for THTH and H for HTHT).

In the full fair–bias–Markov comparison (Fig. 1, right), the
worst experiments (e.g., TTHH) are again cases where all mod-
els make similar predictions. The best experiments are TTTT

and HHHH, a result that is non-obvious because we are compar-
ing three models rather than two. The best experiment HHHH

is very good at separating the fair model from the other two
models, while still predicting a difference between bias and
Markov (Fig. 2a, right). The second best experiment, HHHT,
predicts three qualitatively different responses for the three
models: bias model above baseline, Markov model below
baseline, and fair model at baseline (Fig. 2a, middle), but this
comes at the cost of less EIG overall. An automated design
tool is especially useful in these settings, where human intu-
ition would likely favor the qualitative over the quantitative
differences.

Finally, an experiment’s EIG varies as a function of sam-
ple size (Fig. 2b). This function is non-linear and, crucially,
the rank ordering of experiments can change. For the the
full model comparison, the experiments HTHT and HHHT switch
places after 12 participants. This is particularly relevant when
three models are being compared; small quantitative differ-
ences between two models may grow with the sample size.
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Figure 3: AIG vs. EIG for each experiment

Empirical validation
We validated our system by collecting human judgements for
all 16 experiments and comparing expected information gain
(EIG) with the actual information gain (AIG) from the em-
pirical results. We randomly assigned 351 participants to a
single experiment (sequence). All of the 16 experiments were
completed by ≥20 unique participants.6 Participants pressed
a key to sequentially reveal the sequence of 4 flips and then
predicted the next coin flip (either heads or tails).

For each of the three model comparison scenarios de-
scribed earlier, we compared EIG to AIG for every experi-
ment x. Figure 3 shows that EIG is a reliable predictor of
AIG—the empirical value of an experiment (minimum r =
0.857). This indicates that the OED tool could be relied on to
automatically choose good experiments for this case study.

Case study 2: Category learning
Here, we explore a more complex and theoretically impor-
tant set of models and experiments. In addition, whereas the
previous section considered Bayesian cognitive models, here
we consider non-Bayesian models of category learning. In
particular, we analyze a classic paper on the psychology of
categorization by Medin and Schaffer (1978) that aimed to
distinguish two competing models of category learning – the
exemplar model and the prototype model. By hand, Medin
and Schaffer (MS) designed an experiment (often referred to
as the “5-4 experiment”) where the models made diverging
predictions and found that the results supported the exemplar
model. Subsequently, many other authors followed their lead,
replicating and using the 5-4 experiment to test other compet-
ing models. Here, we ask: how good was the MS 5-4 exper-
iment? Could they have run an experiment that would have
distinguished the two models with less data?

Models
Both the exemplar and prototype models are classifiers that
map inputs (objects represented as a vector of Boolean fea-
tures) to a probability distribution on the categorization re-
sponse (a label: A or B). The exemplar model assumes people

6 N’s were uneven due to randomization. We use the empirical
N’s for comparing EIG to AIG.



store information about every instance of the category they
have observed; categorizing an object is thus a function of
the object’s similarity to all of the examples of category A
versus the similarity to all of B’s examples. By contrast, the
prototype model assumes that people store a measure of cen-
tral tendency for each category—a prototype. Categorization
of an object is thus a function of its similarity to the A pro-
totype versus its similarity to the B prototype. For space, we
omit these model implementations but refer interested readers
to the source code available online.

Experiments
Participants first learn about the category structures in a train-
ing phase where they perform supervised learning of a sub-
set of the objects and are then tested on this learning in a test
phase. During training, participants see a subset of the objects
presented one at a time and must label each object. Initially,
they can only guess at the labels, but they receive feedback so
that they can eventually learn the category assignments. Af-
ter reaching a learning criterion, they complete the test phase,
where they label all the objects (training set and the held out
test set) without feedback.

MS used visual stimuli that varied on 4 binary dimensions
(color: red vs. green, shape: triangle vs. circle, size: small
vs. large, and count: 1 vs. 2). For technical reasons, they
considered only experiments that (1) have linearly separable
decision boundaries, (2) contain 5 A’s and 4 B’s in the training
set, and (3) have the modal A object 1111 and the modal B
object 0000. There are, up to permutation, 933 experiments
that satisfy these constraints.

Predictions of optimal experimental design
Using the predictive prior for p(y;x), we computed EIG for
all 933 experiments and found that the optimal experiment
(for a single participant) sets the As to be 0001, 0011, 1100,

1110, 1111 and the Bs to be 0100, 0110, 1000, 1010. By con-
trast, the MS experiment sets the As as 1110, 1010, 1011,

1101, 0111 and the Bs as 1100, 0110, 0001, 0000. The optimal
experiment had an EIG of 0.08 nats while the MS experiment
had an EIG of only 0.03 nats, a 2.5-fold difference. Indeed,
the MS experiment is near the bottom third of all experiments
(Fig. 5a).

Why is the MS experiment relatively ineffective? One rea-
son is that Medin and Schaffer prioritized experiments that
predict a qualitative categorization difference. In particular,
they argued that the prototype model predicts that object 1110
should be easier to learn than object 1010, whereas the exem-
plar model predicts the reverse. However, this qualitative dif-
ference between two objects comes at the cost of little infor-
mation gain from the remaining objects (Fig 4). The optimal
experiment better disambiguates the models by maximizing
the information from all test objects simultaneously.

Empirical validation
To validate our EIG calculations, we ran the MS and opti-
mal experiment with 60 participants each. Figure 5b shows
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Figure 4: In MS and optimal experiments, the divergence be-
tween model predictions (i.e., the absolute value of the dif-
ference in probabilities of being classified as an A by the two
models). The models diverge more in the optimal experiment.

that the optimal experiment we found for a single participant
is indeed better than the MS experiment (n=1, blue greater
than red). For n=1, the mean actual information gain (AIG)
for the optimal experiment is 0.15, whereas it is 0.026 for the
MS experiment. This 5-fold difference is even greater than
the 2.5-fold difference predicted by EIG. In addition, by in-
crementally introducing more data, we observe that both ex-
periments eventually reach maximal AIG but the optimal ex-
periment takes only 10 participants to do so whereas the MS
experiment takes around 30 participants. Thus, the optimal
experiment could provide the same amount of information for
a third of the experimental cost.

Related work
The basic intuition behind OED—to find experiments that
maximize some measure of expected informativeness—has
been independently discovered in a number of fields, includ-
ing physics (van Den Berg & Curtis, 2003), chemistry (Huan,
2010), biology (Liepe, Filippi, Komorowski, & Stumpf,
2013; Vanlier, Tiemann, Hilbers, & van Riel, 2012), psychol-
ogy (Myung & Pitt, 2009), and statistics (Lindley, 1956).

Previous work, however, has either been too narrow for
general use or required too much statistical and computa-
tional expertise. For example, Liepe et al. (2013) devised
a method for finding experiments that optimize information
gain for parameters of biomolecular models (ODEs with
Gaussian noise). Myung and Pitt (2009) described a more
general optimization method but this requires users to select
their own utility function for the value of an experiment and
implement inference on their own. For example, they com-
pared six memory retention models using Fisher Information
Approximation as a utility function and performed inference
using a custom annealed SMC algorithm. Such “bring-your-
own” requirements impose a significant burden on users and
are a real barrier to entry.

By contrast, our OED system is general and practical,
which allows users to rapidly explore different spaces of mod-
els, experiments, and inference algorithms. This approach is
compatible with certain challenging features of cognitive sci-
ence experiments: participants give noisy responses, experi-
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Figure 5: (a) Distribution of EIG for all category learning
experiments on a single participant. MS has low EIG. (b)
AIG versus number of participants in analysis (error bars are
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participants to achieve maximum AIG.

mental results are sensitive to sample size, and models often
require linking functions to convert model output into predic-
tions about experimental data. Additionally, our work is the
first to demonstrate that expected information gain is a reli-
able predictor of actual information gain.

Conclusion
Cognitive scientists aim to design experiments that yield in-
formative results. webppl-oed partially automates experiment
design, searching for experiments that maximally update be-
liefs about the model distribution. With our approach, sci-
entists write their models as probabilistic programs, define a
space of possible experiments and results, and hand these to
OED for experiment selection. We stress that the tool com-
plements scientists; it does not replace them. Our tool merely
eliminates the need to manually comb large spaces of po-
tential experiments, which is time consuming, tedious, and
prone to bias, such as a preference for local qualitative dif-
ferences at the expense of ultimate quantitative information
gain. The real ingenuity—devising empirical paradigms and
building models—must still come from the scientist.

Our approach suggests a number of interesting direc-
tions for future work. First, OED can be computationally
challenging—our software currently does not scale up to
huge response or experiment spaces, so there is still room
for optimizing search algorithms. Second, we have examined
model comparison problems where there are a finite number
of models. We believe that our approach also works in (1) pa-

rameter learning settings where the goal is to conduct experi-
ments that best update beliefs about continuous parameters of
a model, and (2) model comparison problems where a finite
number of models each have continuous parameters that are
unknown and must be integrated over.

Lastly, we have restricted attention to “one-shot” experi-
ments, but it would be useful to extend our work to sequential
settings such as adaptive testing. Adaptive testing can be for-
mulated as a problem of information gain of sequences of ex-
periments, which produce dependent and non-iid responses.
Some preliminary work suggests that webppl-oed can be prof-
itably extended to the adaptive setting.
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