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Abstract:  Computational models in psychology are precise, fully explicit scientific 

hypotheses. Over the past 15 years, probabilistic modeling of human cognition has 

yielded quantitative theories of a wide variety of reasoning and learning phenomena. 

Recently, Marcus and Davis (2013) critique several examples of this work, using these 

critiques to question the basic validity of the probabilistic approach. Contra the broad 

rhetoric of their article, the points made by Marcus and Davis—while useful to 

consider—do not indicate systematic problems with the probabilistic modeling 

enterprise.
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Computational models in psychology are precise, fully explicit scientific hypotheses. 

Probabilistic models in particular formalize hypotheses about the beliefs of agents—their 

knowledge and assumptions about the world—using the structured collection of probabilities 

referred to as priors, likelihoods, etc. The probability calculus then describes inferences that 

can be drawn by combining these beliefs with new evidence, without the need to commit to a 

process-level explanation of how these inferences are performed (Marr, 1982). Over the past 

15 years, probabilistic modeling of human cognition has yielded quantitative theories of a 

wide variety of phenomena (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 

Marcus and Davis (2013, henceforth, M&D) critique several examples of this work, 

using these critiques to question the basic validity of the probabilistic models approach, based 

on the existence of alternative models and potentially inconsistent data. Contra the broad 

rhetoric of their article, the points made by M&D—while useful to consider—do not indicate 

systematic problems with the probabilistic modeling enterprise.  

Several objections stem from a fundamental confusion about the status of optimality 

in probabilistic modeling, which has been discussed in responses to other critiques (see: 

Griffiths, Chater, Norris, & Pouget, 2012; Frank, 2013). Briefly: an optimal analysis is not the 

optimal analysis for a task or domain. Different probabilistic models instantiate different 

psychological hypotheses. Optimality provides a bridging assumption between these 

hypotheses and human behavior; one that can be re-examined or overturned as the data 

warrant.  

 

Model selection. M&D argue that individual probabilistic models require a host of 

potentially problematic modeling choices. Indeed, probabilistic models are created via a 

series of choices concerning priors, likelihoods, response functions, etc. Each of these choices 

embodies a proposal about cognition, and these proposals will often be wrong. The 
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identification of model assumptions that result in a mismatch to empirical data allows these 

assumptions to be replaced or refined. 

Systematic iteration to achieve a better model is part of the normal progress of 

science. But if choices are made post-hoc, a model can be overfit to the particulars of the 

empirical data. M&D suggest that certain of our models suffer from this issue. For instance, 

they show that data on pragmatic inference (Frank & Goodman, 2012) are inconsistent with 

an alternative variant of the proposed model that uses a hard-max rather than a soft-max 

function, and ask whether the choice of soft-max was dependent on the data.  

The soft-max rule is foundational in economics, decision-theory, and cognitive 

psychology (Luce, 1959, 1977), and we first selected it for this problem based on a 

completely independent set of experiments (Frank, Goodman, Lai, & Tenenbaum, 2009). So 

itÕs hard to see how a claim of overfitting is warranted here. Modelers must balance 

unification with exploration of model assumptions across tasks, but this issue is a general one 

for all computational work, and does not constitute a systematic problem with the 

probabilistic approach. 

 

Task selection. M&D suggested that probabilistic modelers report results on only the 

narrow range of tasks on which their models succeed. But their critique focused on a few 

high-profile, short reports that represented our first attempts to engage with important 

domains of cognition. Such papers necessarily have less in-depth engagement with empirical 

data than more extensive and mature work, though they also exemplify the applicability of 

probabilistic modeling to domains previously viewed as too complex for quantitative 

approaches.  

There is broader empirical adequacy to probabilistic models of cognition than M&D 

imply. If M&D had surveyed the literature they would have found substantial additional 
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evidence for the models they reviewed—and more has accrued since their critique. For 

example, M&D critiqued Griffiths and TenenbaumÕs (2006) analysis of everyday predictions 

for failing to provide independent assessments of the contributions of priors and likelihoods, 

precisely what was done in several later and much longer papers (Griffiths & Tenenbaum, 

2011; Lewandowsky, Griffiths, & Kalish, 2009). They similarly critiqued the particular tasks 

selected by Battaglia, Hamrick, and Tenenbaum (2013) without discussing the growing 

literature testing similar Ònoisy NewtonianÓ models on other phenomena (Gerstenberg, 

Goodman, Lagnado, & Tenenbaum, 2012; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 

2014; Sanborn, Mansinghka, & Griffiths, 2013; Smith, Dechter, Tenenbaum, & Vul, 2013; 

TŽgl‡s et al., 2011). Smith, Battaglia, and Vul (2013) even directly address exactly the 

challenge M&D  posed regarding classic findings of errors in physical intuitions. In other 

domains, such as concept learning and inductive inference, where there is an extensive 

experimental tradition, probabilistic models have engaged with diverse empirical data 

collected by multiple labs over many years (e.g. Goodman, Tenenbaum, Feldman, & 

Griffiths, 2008; Kemp & Tenenbaum, 2009). 

M&D also insinuate empirical problems that they do not test. For instance, in 

criticizing the choice of dependent measure used by Frank and Goodman (2012), they posit 

that a forced-choice task would yield a qualitatively different pattern (discrete rather than 

graded responding). In fact, a forced-choice version of the task produces graded patterns of 

responding across a wide variety of conditions (Stiller, Goodman, & Frank, 2011, 2014; 

Vogel, Emilsson, Frank, Jurafsky, & Potts, 2014). 

 

Conclusions. We agree with M&D that there are real and important challenges for 

probabilistic models of cognition, as there will be for any approach to modeling a system as 

complex as the human mind. To us, the most pressing challenges include understanding the 
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relationship to lower levels of psychological analysis and neural implementation, integrating 

additional formal tools, clarifying the philosophical status of the models, extending to new 

domains of cognition, and, yes: engaging with additional empirical data in the current 

domains while unifying specific model choices into broader principles. As M&D state, 

Òultimately, the Bayesian approach should be seen as a useful tool”—one that we believe has 

already proven its robustness and relevance by allowing us to form and test quantitatively 

accurate psychological hypotheses.
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