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Abstract: Computational models ipsychology are precise, fully explicit scientific
hypotheses. Over the past 15 years, probabilistic modeling of human cognition has
yielded quantitative theories of a wide varietyf reasoning and learning phenomena.
Recently, Marcus and Davis (2013) critiq several examples of this work, using these
critiques to questiorthe basic validityof the probabilistic approach. Conttee broad
rhetoric of their article, the points made by Marcus and Davis—while useful to
consider—do not indicatesystematigroblans with the probabilistic modeling

enterprise.
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Computational models in psychology are precise, fully explicit scientific hypotheses.
Probabilistic models in particular formalize hypotheses about the beliefs of agents—their
knowledge and assumptions about the world—using the structured collection of probabilities
referred to as priors, likelihoods, etc. The probability calculus then describes inferences that
can be drawihy combining these beliefs with new evidence, withbatneed to commib a
processlevel explanation of how these inferences are performed (Marr, 1982). Over the past
15 years, probabilistic modeling of human cognition has yielded quantitative thefocaies
wide variety of phenomen@enenbaum, Kemp, Griffiths, & Goodman, 2011).

Marcus and Davis (2013, henceforti&D) critique several examples of this work,
using these critiquet® questiorthe basic validity of the probabilistic models approadiased
on the existence of alternative models and potentially inconsistenCaattra tle broad
rhetoric of their article, the points made by M&Rvhile useful to considerdo not indicate
systematic problems with the probabilistic modeling enterprise.

Several objectionstem from a fundamental confusion abth# status of optimality
in probailistic modeling which has beediscussed in responsesadihercritiques éee:
Griffiths, Chater, Norris, & Pouge?012; Frank2013). Briefly:an optimalanalysis is nothe
optimalanalysis for a taskr domain Different probabilistic modelmstantate different
psychological hypothese®ptimality provides a bridgingssumption between these
hypotheseand humarehavior onethat can be rexaminedor overturned as the data

warrant.

Model selection.M&D argue that individuaprobabilistic modelsequirea host of
potentially problematic modeling choices. Indeggahbabilistic models are createi a
series of choices concernipgors, likelihoods, response functiom$c Each of these choices

embodesa proposahbout cognitionandtheseproposalswill oftenbe wrong.The
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identification of model assumptions that resaula mismatchio empiricaldataallows these
assumptions to be replacedrefined.

Systematic iteration to achieve a betteidel is part of the normajprogress of
scienceBut if choices are made pekbc,a model can beverfitto the particulars of the
empiricaldata.M&D suggesthatcertainof ourmodek suffer from this issud~or instance,
they show that datan pragmatic inference (Frank & GoodmaA12) are inconsistemtith
an alternative variant of the proposeddel that uses a handax rather thaa softmax
function, and ask whethéne choice of sofmaxwas dependent on the data.

The softmaxrule is foundational in economics, decisitveory, and cognitive
psyctology (Luce, 19591977), andve first selectedt for this problenbased ora
completely independent set of experiments (Frank, Goodran & Tenenbaum, 200950
itOs hartb see how a claim of overfittirig warranted heréodelers musbalance
unification withexploration of model assumptioasrosgasks,but this issue is a general one
for all computational work, and does not constitute a systematitem with the

probabilistic approach.

Task selectionM&D suggested thadrobabilistic modelerseport results on only the
narrow range of tasks on which their models sucdgetitheir critique focused on a few
high-profile, short reports that represented our first attempts to engage with important
domains of cognitionSuch papers necessarily hdess indepthengagement with empirical
datathanmoreextensiveandmaturework, though they also exemplify the applicability of
probabilistic modeling to domains previously viewed as too complex for quantitative
approaches

There is broader empirical @ghacy to probabilistic models of cognition than M&D

imply. If M&D had surveyedhe literature theyould have found substantial additional
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evidence for the models they reviewed—and more has accrusthcetheir critique For
example M&D critiqued Griffiths and TenenbaumOs (2006) analysis of everyday predictions
for failing to provide independent assessmenthie contributions of priors and likelihogds
precisely whatvas done in several latand much longer papefGriffiths & Tenenbaum,
2011; Lewandowsy, Griffiths, & Kalish, 2009). Theysimilarly critiquedthe particular tasks
selected byBattaglia, Hamrick, and Tenenbaum (2013) withadistussing the growing
literaturetesting similar Onoisy Newtoniam©@dek on other phenmena(Gerstenberg,
Goodmanlagnado& Tenenbaum, 2012; Gerstenberg, Goodman, Lagnado& Tenenbaum,
2014; Sanbornmlansinghka, & Griffiths, 2013; Smitfechter,Tenenbaum, & Vul, 2013;
TZglts et al., 2011). Smith, Battaglia, and Vul (20&8¢ndirectly addressxactlythe
challengeM&D posed regarding classic findings of errors in physidaitions. Inother
domainssuch as concefgarningandinductiveinferencewherethereis an extensive
experimentatradition probabilistic models have engaged with diverse empirical data
callected by multipldabs over many yeafe.g. Goodman, Tenenbaum, Feldm&n,
Griffiths, 2008; Kemp & Tenenbaum, 2009)

M&D also insinuate empiricgiroblemshat they do natest. For instance, in
criticizing the choice of dependent measure usedrankand Goodman (2012), they posit
that a forceethoice task would yield a qualitatively different pattern (discrete rather than
gradedresponding). In fact, a forcezhoice version of the task produces graded patterns of
responding across a wide variety ohddions (Stiller, Goodmar& Frank, 2011, 2014;

Vogel, Emilsson, FranKlurafsky,& Potts, 2014).

Conclusions. We agree with M&D that there are real and important challenges for
probabilistic models of cognitioms therewill be for any approach to molileg a system as

complex as the humanind. To us, the most pressing challenges include understanding the
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relationship to lower levels of psychological analysis and neural implementation, integrating
additional formal tools, clarifying the philosophicattsts of the models, extenditmnew
domainsof cognition,and,yes: engaging with additional empirigta in the current
domainswhile unifying specific model choices into broageinciples.As M&D state,
Oultimately, the Bayesian approach should &iesse useful tool”—one that we believe has
alreadyproven its robustnessd relevance by allowing us to form and test quantitatively

accuratesychological hypotheses.
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